Chapter 2.2 Practice Problems

EXPECTED SKILLS:

- Know how to compute the derivative of a function using the limit definition.
- Understand the geometric interpretation of a derivative (as the slope of a tangent line), and be able to use the derivative to help find the equation of a tangent line.
- Understand the physics interpretation of the derivative (as instantaneous velocity).
- Understand how the graph of a function affects the derivative.
- If given the graph of a function, be able to make a reasonable sketch of its derivative function.

PRACTICE PROBLEMS:

1. For each of the following problems, use the definition of the derivative to calculate $f'(x)$.

 (a) $f(x) = 3x$
 (b) $f(x) = 2x^2 - x$
 (c) $f(x) = 3\sqrt{x}$
 (d) $f(x) = \frac{1}{\sqrt{x}}$
 (e) $f(x) = \frac{1}{x - 1}$

2. For each of the following, sketch the graph of the given function and determine where the function is not differentiable. Explain.

 (a) $f(x) = |x + 2|$
 (b) $f(x) = \sqrt[3]{x}$
 (c) $f(x) = \begin{cases} x + 1 & \text{if } x > 1 \\ x^2 & \text{if } x \leq 1 \end{cases}$

3. Find an equation to the tangent line to the given function at the given point.

 (a) $f(x) = x^3$ at $x = 2$
 (b) $f(x) = x^2 - 1$ at $x = -1$

4. Suppose that the function $f(x)$ satisfies $f'(6) = 3$ and $f(6) = 1$. Compute an equation of the tangent line to $f(x)$ when $x = 6$.
5. Suppose \(f(x) \) is a function such that \(f'(x) = x^2 - 4 \).

(a) For which value(s) of \(x \) will \(f(x) \) have horizontal tangent lines?

(b) For which value(s) of \(x \) will the tangent line to \(f(x) \) be parallel to the line \(y = 5x - 37 \)?

(c) For which value(s) of \(x \) will the tangent line to \(f(x) \) be perpendicular to the line \(y = 2x + \pi \)?

6. Match each of the graphs for functions (a)-(d) with the appropriate graph of its derivative (i)-(iv).

(a) \[\text{(a)} \]

(b) \[\text{(b)} \]

(c) \[\text{(c)} \]

(d) \[\text{(d)} \]

(i) \[\text{(i)} \]

(ii) \[\text{(ii)} \]

(iii) \[\text{(iii)} \]

(iv) \[\text{(iv)} \]
7. Sketch a function $y = f(x)$ with the given characteristics. (There are many possible answers.)

(a) $f'(x) < 0$ when $x < 0$; $f'(x) > 0$ when $x > 0$; and $f(0) = 0$.

(b) $f'(x) = 0$ when $x < 0$; $f'(x) < 0$ when $x > 0$; and $f(-1) = 3$; $f'(0)$ DNE.

(c) $f'(x) > 0$ when $x < -1$ and when $x > 1$; $f'(x) < 0$ when $-1 < x < 1$.

(d) $f(x)$ has a vertical tangent line when $x = 1$; $f'(x) > 0$ for $x < 1$; $f(x)$ is not differentiable when $x = -1$.