1. (10 points) Use a double integral to find the volume of the solid that is bounded above by the plane \(z = 4 - x - y \) and below by the rectangle \(R = \{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 2\} \). You may choose whichever order of integration you prefer.
2. Consider the double integral \[\int_R x y^2 \, dA \] where \(R \) is the region bounded by
\[y = 1, y = 2, x = 0, \text{ and } y = x. \]

a. (10 points) Set this up as an iterated integral (or integrals), where \(dA = dy \, dx. \)
\[\textbf{DO NOT EVALUATE THE INTEGRAL(S).} \]

b. (10 points) Set this up as an iterated integral (or integrals), where \(dA = dx \, dy. \)
\[\textbf{DO NOT EVALUATE THE INTEGRAL(S).} \]
3. (15 points) Evaluate the integral by first reversing the order of integration.

$$\int_{0}^{1} \int_{y/2}^{1} e^{x^2} \, dx \, dy$$
4. a. (10 points) Find an equation of the tangent plane to the surface

\[xz + 2yz^2 - z^3 = 7 \]

at the point \((2,3,1)\).

b. (10 points) Find parametric equations for the tangent line to the curve of intersection of

\[xz + 2yz^2 - z^3 = 7 \text{ and } -x + y - z = 0 \]

at \((2,3,1)\).
5. (15 points) Identify all the critical points of the given function. Then classify each critical point as a relative maximum, relative minimum, or saddle point.

\[f(x, y) = xy - x^3 - y^2 \]
6. (20 points) Find the absolute maximum and minimum values of

\[f(x, y) = xy - x - y \]

on the closed triangular region \(R \) with vertices

\((0, 0), (4, 0)\) and \((0, 4)\).
7. (Bonus 5 points) **DON'T, DON'T, DON'T** spend time on the bonus problem unless you feel **VERY, VERY, VERY** confident with your answers on the rest of the test.

Consider the two surfaces described in problem 4:

\[xz + 2yz^2 - z^3 = 7 \quad \text{and} \quad -x + y - z = 0 \]

(a) (3 points) The curve of intersection of these two surfaces can be parameterized in terms of the variable \(z \). Find this parameterization in terms of \(z \).

(b) (2 points) Find the tangent vector to the curve of part (a), evaluated at the value \(z = 1 \). (The resulting vector should be a scalar multiple of the direction vector you found in problem (4b).