1. (10 points) Use a double integral to find the volume of the solid that is bounded above by the plane \(z = 4 - x - y \) and below by the rectangle
\[R = \{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 2\} \]. You may choose whichever order of integration you prefer.

Method One:
\[
\int_0^1 \int_0^2 (4-x-y) \, dy \, dx = \int_0^1 \left[(4-x)y \right]_0^2 - \frac{1}{2} y^2 \bigg|_0^2 \, dx \\
= \int_0^1 (4-2x) - \frac{1}{2} \cdot 2^2 \, dx \\
= 6x \bigg|_0^1 - 2 \cdot \frac{1}{2} x^2 \bigg|_0^1 = 6 - 1 = \sqrt{5}
\]

Method Two:
\[
\int_0^2 \int_0^1 (4-x-y) \, dx \, dy = \int_0^2 \left[(4-y)x \right]_0^1 - \frac{1}{2} x^2 \bigg|_0^1 \, dy \\
= \int_0^2 (4-y) - \frac{1}{2} \ , dy = \int_0^2 \left(\frac{7}{2} - y \right) \, dy \\
= \frac{7}{2} y \bigg|_0^2 - \frac{1}{2} y^2 \bigg|_0^2 = 7 - 2 = \sqrt{5}
\]
2. Consider the double integral \(\int \int_{R} xy^{2} \, dA \) where \(R \) is the region bounded by
\[y = 1, \quad y = 2, \quad x = 0, \quad \text{and} \quad y = x. \]

a. (10 points) Set this up as an iterated integral (or integrals), where \(dA = dy \, dx \).

\(\text{DO NOT EVALUATE THE INTEGRAL(S).} \)

b. (10 points) Set this up as an iterated integral (or integrals), where \(dA = dx \, dy \).

\(\text{DO NOT EVALUATE THE INTEGRAL(S).} \)

\[\begin{align*}
\text{(a)} \quad \int_{0}^{1} \int_{0}^{x} xy^{2} \, dy \, dx & \quad + \quad \int_{1}^{2} \int_{x}^{2} xy^{2} \, dy \, dx \\
\text{(b)} \quad \int_{1}^{2} \int_{0}^{y} x \, y^{2} \, dx \, dy
\end{align*} \]
3. (15 points) Evaluate the integral by first reversing the order of integration.

\[\int_0^2 \int_0^{x^2/2} e^{x^2} \, dy \, dx \]

First, find the new limits of integration.

The region of integration is bounded by the lines:
- \(y = 0 \)
- \(y = x^2/2 \)
- \(x = 1 \)
- \(x = 0 \)

The region can be described by the inequality:
\(0 \leq y \leq x^2/2 \)
\(0 \leq x \leq 1 \)

To reverse the order of integration, we integrate with respect to \(x \) first and then \(y \):

\[\int_0^{x^2/2} \int_0^1 e^{x^2} \, dx \, dy \]

Evaluate the inner integral:
\[\int_0^1 e^{x^2} \, dx \]

Make the substitution: \(u = x^2 \), \(du = 2x \, dx \), \(x = 0 \Rightarrow u = 0 \), \(x = 1 \Rightarrow u = 1 \)

\[= \int_0^1 e^{u} \, \frac{du}{2} \]

\[= 2 \left[e^u \right]_0^1 \]
\[= 2(e - 1) \]

So the integral evaluates to:
\[2(e - 1) \]
4. a. (10 points) Find an equation of the tangent plane to the surface
\[xz + 2yz^2 - z^3 = 7 \] at the point \((2,3,1)\).

b. (10 points) Find parametric equations for the tangent line to the curve of
intersection of \(xz + 2yz^2 - z^3 = 7\) and \(-x + y - z = 0\) at \((2,3,1)\).

\[f(x, y, z) = xz + 2yz^2 - z^3 \]

\[f_x = z \quad f_x(2,3,1) = 1 \]
\[f_y = 2z^2 \quad f_y(2,3,1) = 2 \]
\[f_z = x + 4yz - 3z^2 \quad f_z(2,3,1) = 2 + 12 - 3 = 11 \]
\[\nabla f(2,3,1) = \langle 1, 2, 11 \rangle \]

Tangent Plane: \(1(x-2) + 2(y-3) + 11(z-1) = 0\) \(\Rightarrow\) \(x + 2y + 11z = 19\)

\[g(x, y, z) = -x + y - z \]

\[g_x = -1 \quad g_y = 1 \quad g_z = -1 \]
\[\nabla g(2,3,1) = \langle -1, 1, -1 \rangle \]
\[\nabla f(2,3,1) \times \nabla g(2,3,1) = \begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 11 \\ -1 & 1 & -1 \end{vmatrix} \]
\[= \langle -2 - 11 \rangle \hat{k} - \langle -1 + 11 \rangle \hat{j} + \langle 1 + 2 \rangle \hat{k} \]
\[= \langle -13, -10, 3 \rangle \]

Tangent Line: \[
\begin{cases}
 x = 2 - 13t \\
 y = 3 - 10t \\
 z = 1 + 3t
\end{cases}
\]
5. (15 points) Identify all the critical points of the given function. Then classify each critical point as a relative maximum, relative minimum, or saddle point.

\[f(x, y) = xy - x^3 - y^2 \]

\[
\begin{align*}
\frac{\partial f}{\partial x} &= y - 3x^2 = 0 \implies y = 3x^2 \\
\frac{\partial f}{\partial y} &= x - 2y = 0 \implies x - 6x^2 = 0 \\
&= x(1 - 6x) = 0 \\
x &= 0 \quad x = \frac{1}{6} \\
y &= 0 \quad y = \frac{1}{12}
\end{align*}
\]

Critical Points: \((0, 0), \left(\frac{1}{6}, \frac{1}{12}\right)\)

\[
\begin{align*}
f_{xx} &= -6x \\
f_{yy} &= -2 \\
f_{xy} &= 1
\end{align*}
\]

\[
\Delta(x, y) = (-6x)(-2) - (1)^2 = 12x - 1
\]

\[
\begin{align*}
\Delta(0, 0) &= -1 < 0 \implies \text{saddle point at } (0, 0) \\
\Delta\left(\frac{1}{6}, \frac{1}{12}\right) &= 2 - 1 = 1 > 0 \\
f_{xx}\left(\frac{1}{6}, \frac{1}{12}\right) &= -1 < 0 \implies \text{relative maximum at } \left(\frac{1}{6}, \frac{1}{12}\right)
\end{align*}
\]
6. (20 points) Find the absolute maximum and minimum values of
\[f(x, y) = xy - x - y \] on the closed triangular region \(R \) with vertices
(0, 0), (4, 0) and (0, 4).

\[f_x = y - 1 = 0 \Rightarrow y = 1 \]
\[f_y = x - 1 = 0 \Rightarrow x = 1 \]

Critical Point: (1, 1) \[f(1, 1) = -1 \]

Boundary:

(1) From (0, 0) to (4, 0):
\[y = 0, \ 0 \leq x \leq 4 \]
\[f(x, 0) = -x = u(t) \]
\[u'(t) = -1 \neq 0 \ \text{No critical points on} \ 0 < x < 4 \]

(2) From (0, 0) to (0, 4):
\[x = 0, \ 0 \leq y \leq 4 \]
\[f(0, y) = -y = v(s) \]
\[v'(s) = -1 \neq 0 \ \text{No critical points on} \ 0 < y < 4 \]

(3) From (0, 4) to (4, 0):
\[y = -x + 4, \ 0 \leq x \leq 4 \]
\[f(x, -x+4) = x(-x+4) - x - (-x+4) = -x^2 + 4x - x + x - 4 = -x^2 + 4x - 4 = w(u) \]
\[w'(u) = -2x + 4 = 0 \Rightarrow x = 2 \ \text{w(2) = 0} \]

Vertices:
\[f(0, 0) = 0 \]
\[f(4, 0) = -4 \]
\[f(0, 4) = -4 \]

Compare all values:

Absolute Max: \(0 \)
Absolute Min: \(-4 \)
7. (Bonus 5 points) **DON'T, DON'T, DON'T** spend time on the bonus problem unless you feel **VERY, VERY, VERY** confident with your answers on the rest of the test.

Consider the two surfaces described in problem 4:

\[
\begin{align*}
1 & \quad xz + 2yz^2 - z^3 = 7 \\
2 & \quad -x + y - z = 0
\end{align*}
\]

(a) (3 points) The curve of intersection of these two surfaces can be parameterized in terms of the variable \(z \). Find this parameterization in terms of \(z \).

(b) (2 points) Find the tangent vector to the curve of part (a), evaluated at the value \(z = 1 \). (The resulting vector should be a scalar multiple of the direction vector you found in problem (4b).

\[
\begin{align*}
\text{(a)} & \quad \text{From } 2: \quad y = x + z \quad \text{Plug into 1:} \quad xz + 2(x+z)z^2 - z^3 = 7 \\
& \quad \text{Solve for } x: \quad xz + 2xz^2 + 2z^3 - z^3 = 7 \quad x = \frac{7 - z^3}{z + 2z^2} \\
\text{From } 2: \quad x = y - z \quad \text{Plug into 1:} \quad (y-z)z + 2yz^2 - z^3 = 7 \\
& \quad \text{Solve for } y: \quad yz - z^2 + 2yz^2 - z^3 = 7 \quad y = \frac{7 + z^2 + z^3}{z + 2z^2}
\end{align*}
\]

Parameterization: \(x = \frac{7 - z^3}{z + 2z^2}, \quad y = \frac{7 + z^2 + z^3}{z + 2z^2}, \quad z = z \)

\[
\begin{align*}
\text{(b)} & \quad \frac{dx}{dz} = \frac{(z+2z^2)(-3z^2) - (7-z^3)(1+4z)}{(z+2z^2)^2} \quad \frac{dx}{dz} \bigg|_{z=1} &= -\frac{9-30}{9} = \frac{-39}{9} \\
\frac{dy}{dz} &= \frac{(z+2z^2)(2z+3z^2) - (7+z^2+z^3)(1+4z)}{(z+2z^2)^2} \quad \frac{dy}{dz} \bigg|_{z=1} &= \frac{15-45}{9} = \frac{-30}{9} \\
\frac{dz}{dz} &= 1
\end{align*}
\]

Tangent vector: \(\langle -\frac{39}{9}, -\frac{30}{9}, 1 \rangle \)

Note: \(\langle -\frac{39}{9}, -\frac{30}{9}, 1 \rangle = \frac{1}{3} \langle -13, -10, 3 \rangle \) from (4b)
This Page Blank for Extra Work