AN EXAMPLE OF A NON-SEPARABLE HILBERT SPACE

MATT ZIEMKE

Let \(C(\mathbb{R}) \) be the set of complex valued functions on \(\mathbb{R} \) and define \(\| \cdot \| : C(\mathbb{R}) \to [0, \infty] \) by

\[
\|f\|_0 = \left(\lim_{N \to \infty} \frac{1}{N} \int_{-N}^{N} |f(x)|^2 dx \right)^{1/2}
\]

and let \(\mathcal{H}_0 = \{ f \in C(\mathbb{R}) : \|f\|_0 < \infty \} \). Despite the notation, \(\| \cdot \|_0 \) is not a norm on \(\mathcal{H}_0 \). In fact, for any \(f \in L_2(\mathbb{R}) \) we have that \(\|f\|_0 = 0 \). We do, however, have that \(\| \cdot \|_0 \) is a semi-norm on \(\mathcal{H}_0 \) so, if we let \(I = \{ f \in \mathcal{H}_0 : \|f\|_0 = 0 \} \), then \(I \) is a closed subspace of \(\mathcal{H}_0 \) and so \(\mathcal{H}_1 = \mathcal{H}_0/I \) is a normed vector space with norm \(\| \cdot \| \) defined by

\[
\|f + I\| = \inf_{\varphi \in I} \|f - \varphi\|_0
\]

for all \(f + I \in \mathcal{H}_1 \). Note, by how we defined \(I \), that for any \(f \in \mathcal{H}_0 \) we have \(\|f + I\| = \|f\|_0 \). Now define \(\langle \cdot, \cdot \rangle : \mathcal{H}_1 \times \mathcal{H}_1 \to \mathbb{C} \) by

\[
\langle f + I, g + I \rangle = \lim_{N \to \infty} \frac{1}{N} \int_{-N}^{N} f(x)\overline{g(x)} dx
\]

for all \(f + I, g + I \in \mathcal{H}_1 \) to make \(\mathcal{H}_1 \) an inner product space. Then let \(\mathcal{H} \) be the completion of \(\mathcal{H}_1 \) and so \(\mathcal{H} \) is a Hilbert space containing \(\mathcal{H}_1 \). (The reader may be curious as to how we take an existential completion such as this. If we let \(j : \mathcal{H}_1 \to \mathcal{H}_1^{**} \) be the natural map of \(\mathcal{H}_1 \) into its bidual, i.e., for \(x \in \mathcal{H}_1 \), \(j(x) : \mathcal{H}_1^* \to \mathbb{C} \) where \(j(x)(\phi) = \phi(x) \) for all \(\phi \in \mathcal{H}_1^* \), then \(j \) is a linear isometric embedding of \(\mathcal{H}_1 \) into \(\mathcal{H}_1^{**} \) and so we take the closure of \(\mathcal{H}_1 \) in \(\mathcal{H}_1^{**} \) to get \(\mathcal{H} \). Further, since \(\mathcal{H}_1^{**} \) is complete, we then have that \(\mathcal{H} \) is complete.) Now we have our Hilbert space \(\mathcal{H} \). Why is it non-separable? Consider \(\mathcal{B} = \{ \sin(\alpha x) : \alpha \in \mathbb{R} \} \). It is easy to check that \(\mathcal{B} \) is an uncountable (clearly) orthonormal set. First, if we suppose \(\alpha, \beta \in \mathbb{R} \) such that \(\alpha \neq \beta \) then

\[
|\langle \sin(\alpha x), \sin(\beta x) \rangle| = \left| \lim_{N \to \infty} \frac{1}{N} \int_{-N}^{N} \sin(\alpha x)\sin(\beta x) dx \right|
\]

\[
= \left| \lim_{N \to \infty} \frac{1}{2N} \int_{-N}^{N} \cos((\alpha - \beta)x) - \cos((\alpha + \beta)x) dx \right|
\]

\[
= \left| \lim_{N \to \infty} \frac{1}{2N} \left. \frac{\sin((\alpha - \beta)x)}{\alpha - \beta} \right|_{-N}^{N} - \left. \frac{\sin((\alpha + \beta)x)}{\alpha + \beta} \right|_{-N}^{N} \right|
\]

\[
\leq \lim_{N \to \infty} \frac{1}{2N} \left(\frac{2}{\alpha - \beta} + \frac{2}{\alpha + \beta} \right)
\]

\[
= 0
\]

Date: September 2012.
Further, for $\alpha = \beta$ we have

\[
\langle \sin(\alpha x), \sin(\alpha x) \rangle = \lim_{N \to \infty} \frac{1}{N} \int_{-N}^{N} \sin^2(\alpha x) \, dx
\]

\[
= \lim_{N \to \infty} \frac{1}{2N} \int_{-N}^{N} 1 - \cos(2\alpha x) \, dx
\]

\[
= \lim_{N \to \infty} \left(1 - \frac{\sin(2\alpha N)}{2\alpha N} \right)
\]

\[
= 1
\]

So, we have that B is an uncountable orthonormal set in \mathcal{H} and so \mathcal{H} cannot have a countable basis, hence \mathcal{H} is non-separable.