The Asymptotic Distribution of Symbols on Staircase Tableaux Diagonals

Amanda Lohss

September 15, 2016
Outline

- Definition of Staircase Tableaux
- Connections/Motivation
- Previous Results
- Results
- Open Problems
Staircase Tableaux (Corteel-Williams (2010))

Definition

A staircase tableau of size n is a Young diagram of shape \((n, n-1, \ldots, 1)\) such that:

1. The boxes are empty or contain an \(\alpha\), \(\beta\), \(\gamma\), or \(\delta\).

Figure: An example of a staircase tableau of size 7.
Staircase Tableaux (Corteel-Williams (2010))

Definition

A staircase tableau of size n is a Young diagram of shape $(n, n-1, \ldots, 1)$ such that:

1. The boxes are empty or contain an α, β, γ, or δ.
2. Every box on the diagonal contains a symbol.

<table>
<thead>
<tr>
<th>α</th>
<th>γ</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>γ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>δ</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: An example of a staircase tableau of size 7.
A staircase tableau of size n is a Young diagram of shape $(n, n-1, \ldots, 1)$ such that:

1. The boxes are empty or contain an α, β, γ, or δ.
2. Every box on the diagonal contains a symbol.
3. All boxes in the same column and above an α or γ are empty.

Figure: An example of a staircase tableau of size 7.
Staircase Tableaux (Corteel-Williams (2010))

Definition

A staircase tableau of size n is a Young diagram of shape $(n, n-1, \ldots, 1)$ such that:

1. The boxes are empty or contain an α, β, γ, or δ.
2. Every box on the diagonal contains a symbol.
3. All boxes in the same column and above an α or γ are empty.
4. All boxes in the same row and to the left of an β or δ are empty.

Figure: An example of a staircase tableau of size 7.
The rows and columns in a staircase tableau are numbered from 1 through n, beginning with the box in the NW-corner and continuing south and east respectively.

Figure: A staircase tableau with weight $\alpha^2 \beta^3 \gamma^3 \delta^2$.

$\begin{array}{cccc}
\alpha & \gamma & \delta & \alpha \\
\beta & \gamma & \delta & \\
\beta & \gamma & & \\
\beta & & & \\
\end{array}$
The rows and columns in a staircase tableau are numbered from 1 through n, beginning with the box in the NW-corner and continuing south and east respectively.

Symmetric with respect to interchanging rows/columns, α/β, and γ/δ.

Figure: A staircase tableau with weight $\alpha^2 \beta^3 \gamma^3 \delta^2$.
The rows and columns in a staircase tableau are numbered from 1 through n, beginning with the box in the NW-corner and continuing south and east respectively.

Symmetric with respect to interchanging rows/columns, α/β, and γ/δ.

The weight of a staircase tableau is the product of all its symbols.

\[\alpha^2 \beta^3 \gamma^3 \delta^2 \]
As proven by Corteel and Williams, summing over the weight of all staircase tableaux gives,

\[
\sum_{S \in S_n} \text{wt}(S) = \prod_{i=0}^{n-1} (\alpha + \beta + \delta + \gamma + i(\alpha + \gamma)(\beta + \delta)).
\]

and therefore the total number of staircase tableaux is \(4^n \cdot n!\).

Figure: A staircase tableau with weight \(\alpha^2 \beta^3 \gamma^3 \delta^2\).
Introduced due to connections with the asymmetric simple exclusion process (ASEP), an important particle model with applications in physics, biology and biochemistry.
Introduced due to connections with the asymmetric simple exclusion process (ASEP), an important particle model with applications in physics, biology and biochemistry.

According to Yau, the ASEP is “the default stochastic model for transport phenomena.”
Connections

- Introduced due to connections with the asymmetric simple exclusion process (ASEP), an important particle model with applications in physics, biology and biochemistry.

- According to Yau, the ASEP is “the default stochastic model for transport phenomena.”

- Numerous other connections such as Askey-Wilson polynomials, tree–like tableaux, permutation tableaux, and permutations.
A Markov Chain with n sites.

\[\begin{array}{c}
\circ \circ \bullet \bullet \circ \circ \circ \circ \bullet \\
\end{array} \]
The ASEP

A Markov Chain with n sites.

Transition Probabilities:

- $\bigcirc \cdot \cdot \cdot \bigcirc \cdot \cdot \cdot \bigcirc \cdot \cdot \cdot \bigcirc$ to
- \bigcirc to $\bigcirc \cdot \cdot \cdot \bigcirc \cdot \cdot \cdot \bigcirc \cdot \cdot \cdot \bigcirc$: $\frac{\alpha}{n+1}$
- \bigcirc to $\cdot \cdot \cdot \bigcirc$: $\frac{\gamma}{n+1}$
The ASEP

A Markov Chain with n sites.

\[
\begin{align*}
\circ \circ \bullet \circ \bullet \circ \circ \circ \\
& \\
\text{Transition Probabilities:} \\
\circ A \text{ to } \bullet A : \frac{\alpha}{n+1} \\
\bullet A \text{ to } \circ A : \frac{\gamma}{n+1} \\
A \circ \text{ to } A \bullet : \frac{\delta}{n+1} \\
A \bullet \text{ to } A \circ : \frac{\beta}{n+1}
\end{align*}
\]
The ASEP

A Markov Chain with n sites.

\[
\begin{align*}
\circ A \text{ to } \bullet A &: \frac{\alpha}{n+1} \\
\bullet A \text{ to } \circ A &: \frac{\gamma}{n+1} \\
A \circ \text{ to } A \bullet &: \frac{\delta}{n+1} \\
A \bullet \circ B \text{ to } A \circ \bullet B &: \frac{u}{n+1} \\
A \bullet \circ B \text{ to } A \circ \bullet B &: \frac{q}{n+1} \\
A \circ \bullet B \text{ to } A \bullet \circ B &: \frac{\beta}{n+1}
\end{align*}
\]
Connection with the ASEP

Type of a staircase tableaux:
- for each α or δ on diagonal.
- for each β or γ on diagonal.
Type of a staircase tableaux:

- for each α or δ on diagonal.
- for each β or γ on diagonal.
Connection with the ASEP

Type of a staircase tableaux:
• for each α or δ on diagonal.
 ◦ for each β or γ on diagonal.

Filling rules for u’s and q’s:
1. u’s in all boxes east of a β and q’s in all boxes east of a δ.
2.

Amanda Lohss Purdue 2016
Connection with the ASEP

Type of a staircase tableaux:
- for each α or δ on diagonal.
 - for each β or γ on diagonal.

Filling rules for u’s and q’s:
1. u’s in all boxes east of a β and q’s in all boxes east of a δ.
2.

<table>
<thead>
<tr>
<th>α</th>
<th>γ</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>u</td>
<td>β</td>
</tr>
<tr>
<td>γ</td>
<td>δ</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amanda Lohss
Purdue 2016
Connection with the ASEP

Type of a staircase tableaux:
• for each α or δ on diagonal.
 ◦ for each β or γ on diagonal.

Filling rules for u’s and q’s:
1. u’s in all boxes east of a β and q’s in all boxes east of a δ.

2.

\[
\begin{array}{cccc}
\alpha & \gamma & \alpha & \bullet \\
q & q & q & q & q & q & q & q & \delta & \bullet \\
u & u & \beta & \gamma & \circ & \\
q & q & q & \delta & \bullet & \\
u & u & \beta & \circ & \\
\gamma & \circ & \\
\beta & \circ &
\end{array}
\]
Type of a staircase tableaux:
• for each α or δ on diagonal.
 ○ for each β or γ on diagonal.

Filling rules for u’s and q’s:

1. u’s in all boxes east of a β and q’s in all boxes east of a δ.

2. u’s in all boxes north of a α or δ and q’s in all boxes north of a β or γ.

Connection with the ASEP

Amanda Lohss Purdue 2016
Connection with the ASEP

Type of a staircase tableaux:
• for each α or δ on diagonal.
 ◦ for each β or γ on diagonal.

Filling rules for u’s and q’s:

1. u’s in all boxes east of a β and q’s in all boxes east of a δ.

2. u’s in all boxes north of a α or δ and q’s in all boxes north of a β or γ.
Connection with the ASEP

Type of a staircase tableaux:
• for each α or δ on diagonal.
 ○ for each β or γ on diagonal.

Filling rules for u’s and q’s:
1. u’s in all boxes east of a β and q’s in all boxes east of a δ.
2. u’s in all boxes north of a α or δ and q’s in all boxes north of a β or γ.
The steady state probability that the ASEP is in state η is:

$$\frac{\sum_{T \in \mathcal{T}} \text{wt}(T)}{\sum_{S \in S_n} \text{wt}(S)}.$$
For combinatorical considerations, let $u = q = 1$. Then W.L.O.G. we can study α/β-staircase tableaux. It was shown that
Random α/β-Staircase Tableaux

For combinatorical considerations, let $u = q = 1$. Then W.L.O.G. we can study α/β-staircase tableaux. It was shown that

$$\sum_{S \in S_n} \text{wt}(S) = \alpha^n \beta^n (a + b)^n$$

where $a := \alpha^{-1}$ and $b := \beta^{-1}$.
Random α/β-Staircase Tableaux

For combinatorical considerations, let $u = q = 1$. Then W.L.O.G. we can study α/β-staircase tableaux. It was shown that

$$\sum_{S \in S_n} \text{wt}(S) = \alpha^n \beta^n (a + b)^n$$

where $a := \alpha^{-1}$ and $b := \beta^{-1}$.

The total number of α/β-staircase tableaux is $|S_n| = 2^n = (n + 1)!$
Random α/β-Staircase Tableaux

For combinatorical considerations, let $u = q = 1$. Then W.L.O.G. we can study α/β-staircase tableaux. It was shown that

$$\sum_{S \in S_n} \text{wt}(S) = \alpha^n \beta^n (a + b)^n$$

where $a := \alpha^{-1}$ and $b := \beta^{-1}$.

The total number of α/β-staircase tableaux is $|S_n| = 2^n = (n + 1)!$

Random α/β-staircase tableaux:

$$\mathbb{P}(S_n,\alpha,\beta = S) = \frac{\text{wt}(S)}{\alpha^n \beta^n (a + b)^n}.$$
Because of the ASEP, the following random variables are interesting:

1. A_n^k, the number of α’s along the k^{th} diagonal.

2. B_n^k, the number of β’s along the k^{th} diagonal.

3. X_n^k, the number of non-empty boxes along the k^{th} diagonal.
Some Previous Results (Hitczenko-Janson)

Previous Result:

\[
\frac{A_n^1 - n/2}{\sqrt{n}} \xrightarrow{d} N(0, 1/12)
\]
Some Previous Results (Hitczenko-Janson)

Previous Result:

\[
\frac{A_n^1 - n/2}{\sqrt{n}} \xrightarrow{d} N(0, 1/12)
\]

Conjecture:

\(A_n^k\) and \(B_n^k\) are asymptotically Poisson \((k \geq 2)\).
Let $\text{Pois}(\lambda)$ be a Poisson random variable with parameter λ. Then as $n \to \infty$:

$$A_n^k \xrightarrow{d} \text{Pois} \left(\frac{1}{2} \right) \quad B_n^k \xrightarrow{d} \text{Pois} \left(\frac{1}{2} \right) \quad X_n^k \xrightarrow{d} \text{Pois} (1)$$
Outline of Proof

Theorem (Method of Factorial Moments)

If a sequence of random variables \(\{X_k\}_{k=1}^{n} \) is such that

\[
\lim_{n \to \infty} \mathbb{E}(X_k)_r \to \lambda^r, \quad r = 0, 1, \ldots
\]

then,

\[
X_n \overset{d}{\to} \text{Pois}(\lambda)
\]

For this calculation, one needs to calculate \(\mathbb{P}(\alpha_{j_1} \cap \alpha_{j_2} \cdots \cap \alpha_{j_r}) \).
Method: conditional probability and induction

\[P(\alpha_{j_1} \cap \alpha_{j_2} \cdots \cap \alpha_{j_r}) = P(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \cdot P(\alpha_{j_1}). \]

For the second and third diagonal, \(P(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \) can be computed by considering all cases.
2nd and 3rd Diagonals (with Paweł Hitczenko)

Method: conditional probability and induction

\[P(\alpha_{j_1} \cap \alpha_{j_2} \cap \cdots \cap \alpha_{j_r}) = P(\alpha_{j_2} \cap \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \cdot P(\alpha_{j_1}). \]

For the second and third diagonal, \(P(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \) can be computed by considering all cases.
2nd and 3rd Diagonals (with Paweł Hitczenko)

Method: conditional probability and induction

$$P(\alpha_{j_1} \cap \alpha_{j_2} \cdots \cap \alpha_{j_r}) = P(\alpha_{j_2} \cdots \cap \alpha_{j_r}|\alpha_{j_1}) \cdot P(\alpha_{j_1}).$$

For the second and third diagonal, $P(\alpha_{j_2} \cdots \cap \alpha_{j_r}|\alpha_{j_1})$ can be computed by considering all cases.
2nd and 3rd Diagonals (with Paweł Hitczenko)

Method: conditional probability and induction

\[
P(\alpha_{j_1} \cap \alpha_{j_2} \cdots \cap \alpha_{j_r}) = P(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \cdot P(\alpha_{j_1}).
\]

For the second and third diagonal, \(P(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1})\) can be computed by considering all cases.
Method: conditional probability and induction

\[\mathbb{P}(\alpha_{j_1} \cap \alpha_{j_2} \cdots \cap \alpha_{j_r}) = \mathbb{P}(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \cdot \mathbb{P}(\alpha_{j_1}). \]

For the second and third diagonal, \(\mathbb{P}(\alpha_{j_2} \cdots \cap \alpha_{j_r} | \alpha_{j_1}) \) can be computed by considering all cases.
Method: conditional probability and induction

\[P(\alpha_{j_1} \cap \alpha_{j_2} \cdots \cap \alpha_{j_r}) = P(\alpha_{j_2} \cdots \cap \alpha_{j_r}|\alpha_{j_1}) \cdot P(\alpha_{j_1}). \]

For the second and third diagonal, \(P(\alpha_{j_2} \cdots \cap \alpha_{j_r}|\alpha_{j_1}) \) can be computed by considering all cases.
Kth Diagonal

\[\alpha \alpha \beta \]
Kth Diagonal
Kth Diagonal

\[\begin{array}{cccc}
\alpha & \alpha & \alpha & \\
\beta & \alpha & & \\
\beta & & & \\
\beta & & & \\
\end{array} \]
Define a symbol to be D-connected if it is not on the first diagonal and one of the following two conditions hold:

1. The symbol lies on D but is not on the kth diagonal.
2. There exists a symbol above or to the left that is D-connected or lies on D.
D-connected symbols

Lemma

Properties of D-connected symbols:

1. Any symbol in the same column as a D-connected α or the same row as a D-connected β is also D-connected.

2. There are at most $k - 2$ D-connected symbols.

3. Each D-connected symbol can be paired uniquely with an opposite symbol on the first diagonal.
Notice that the weight of the larger tableau is $\alpha^2 \beta^2 \times$ the weight of the smaller tableau.
Notice that the weight of the larger tableau is $\alpha^2 \beta^2 \alpha^2 \beta^2$ times the weight of the smaller tableau.
Notice that the weight of the larger tableau is $\alpha^2 \beta^2$ times the weight of the smaller tableau.
Notice that the weight of the larger tableau is $\alpha^2 \beta \alpha^2 \beta^2$ times the weight of the smaller tableau.
Define $\mathcal{A}_{k,h}$ to be the set of all possible arrangements of h D-connected symbols in a tableau of size k.

Example:

$$\mathcal{A}_{4,2} = \{ \beta_1^2 \cap \beta_1^3, \beta_1^2 \cap \alpha_3^2, \beta_1^3 \cap \alpha_3^2, \beta_2^2 \cap \alpha_2^3, \beta_1^2 \cap \alpha_2^2, \alpha_2^3 \cap \alpha_3^2 \}$$

Note that $\mathcal{A}_{k,0} = \{ \emptyset \}$ for all $k \geq 1$.
Lemma

There exists a bijection between tableaux of size n with α_1 and triples (h, a, T) where $0 \leq h \leq k - 2$, $a \in A_{k,h}$ and T is a tableaux of size $n - h - 2$
An example of the bijection

Figure: The bijection when $n = 3$ and $k = 3$.
Proof: Surjectivity
Key Result

If $C_{k,h} := |A_{k,h}|$,

$$\sum_{S \in \mathcal{T}_{n,\alpha}} \text{wt}(S) = \sum_{h=0}^{k-2} C_{k,h} \alpha^{h+2} \beta^{h+1} \sum_{T \in \mathcal{T}_{n-h-2,\alpha,h}} \text{wt}(T).$$

Therefore,

$$\Pr_{n,\alpha,\beta}(\alpha_1^k, \alpha_2^k, \ldots, \alpha_j^k) = \sum_{h=0}^{k-2} C_{k,h} \frac{b}{(n+a+b-1)_{h+2}} \Pr_{n-h-2,\alpha,\beta}(\alpha_2^{h-2}, \ldots, \alpha_j^{h-2}).$$
The Distribution of Alpha Boxes

Theorem

Let $1 \leq j_1 < \ldots < j_r \leq n - k + 1$. If

$$j_l \leq j_{l+1} - k, \quad \forall l = 1, 2, \ldots, r - 1$$

then

$$\mathbb{P}_{n,\alpha,\beta}(\alpha_{j_1}, \ldots, \alpha_{j_r}) = \prod_{l=1}^{r} \frac{j_{r-l+1}}{n^2} + O\left(\frac{1}{n^{r+1}}\right).$$

Otherwise,

$$\mathbb{P}_{n,\alpha,\beta}(\alpha_{j_1}, \ldots, \alpha_{j_r}) = O\left(\frac{1}{n^r}\right).$$
Open Problems

- What about if k is not fixed?
- What about other regions?
- Asymptotic joint distribution of symbols on different diagonals?
Thank you!