Related Rates Problems

To illustrate the general features of these problems we begin with a simple example.

A stone is dropped into a pool of water. A circular ripple spreads out in the pool. The radius increases at a rate of 3 in/sec. How fast is the area of the circle increasing?

General Features: Two rates of change involved. One known, one to be determined. Need a relationship between these rates of change so we can plug in the one we know and solve for the one we don't know.

Procedure (illustrated on the example above):

1. Draw a "snapshot" at some typical instant \(t \) and introduce names for the variables whose rates of change (derivatives) are involved.

\[A = A(t) = \text{area of the circle at time } t \]
\[r = r(t) = \text{radius of the circle at time } t \]
2. Write out explicitly what you know and what you're supposed to find.

Known: \(\frac{dr}{dt} = 3 \text{ in/sec} \)

Find: \(\frac{dA}{dt} \)

3. Find a relationship between the variables themselves that is true at all times \(t \).

\[A = \pi r^2 \]

4. Differentiate this relationship with respect to \(t \).

\[\frac{dA}{dt} = \pi \left(2r \frac{dr}{dt} \right) = 2\pi r \frac{dr}{dt} \]

5. Plug in the derivative you know.

\[\frac{dA}{dt} = 2\pi r (3) = 6\pi r \text{ in}^2/\text{sec} \]

Note: In this example, even though \(r \) increases at a constant rate, \(A \) does not, i.e., \(\frac{dA}{dt} \) depends on \(r \). This makes sense, right? The larger the circle the greater the effect on the area of a 3 in change in the radius.
MORE EXAMPLES:

1. HOW FAST DOES THE WATER LEVEL RISE IN A CYLINDRICAL CAN OF RADIUS 2 FT IF WATER IS BEING POURED IN AT A RATE OF 3 FT3/SEC?

\[V = V(t) \]
\[= \text{VOLUME OF WATER AT TIME } t \]
\[y = y(t) = \text{DEPTH OF WATER AT TIME } t \]

KNOWN: \[\frac{dV}{dt} = 3 \]

FIND: \[\frac{dy}{dt} \]

RELATIONSHIP BETWEEN \(V(t) \) AND \(y(t) \) (FORMULA FOR THE VOLUME OF A CYLINDER IS \(V = \pi r^2 h \)):

\[V = \pi (2^2) y \]
\[V = 4\pi y \]

DIFFERENTIATE WITH RESPECT TO \(t \):

\[\frac{dV}{dt} = 4\pi \frac{dy}{dt} \]

SO \[\frac{dy}{dt} = \frac{\frac{dV}{dt}}{4\pi} = \frac{3}{4\pi} \text{ FT/SEC} \]
4. GAS IS ESCAPING FROM A SPHERICAL BALLOON AT A RATE OF 2 FT³/min. HOW FAST IS THE RADIUS DECREASING WHEN IT (THE RADIUS) IS 12 FT?

\[r = r(t) = \text{radius at time } t \]

\[V = V(t) = \text{volume at time } t \]

KNOWN: \(\frac{dV}{dt} = -2 \) (NOTE THE MINUS SIGN)

FIND: \(\frac{dr}{dt} \) WHEN \(r = 12 \)

RELATIONSHIP BETWEEN \(V(t) \) AND \(r(t) \) (FORMULA FOR THE VOLUME OF A SPHERE):

\[V = \frac{4}{3} \pi r^3 \]

DIFFERENTIATE WITH RESPECT TO \(t \):

\[\frac{dV}{dt} = \frac{4}{3} \pi (3r^2 \frac{dr}{dt}) = 4\pi r^2 \frac{dr}{dt} \]

SO

\[\frac{dr}{dt} = \frac{\frac{dV}{dt}}{4\pi r^2} = \frac{-2}{4\pi (12^2)} = -\frac{1}{288\pi} \text{ FT/min} \]
3. A ladder 26 ft long rests on the (horizontal) ground and leans against a (vertical) wall. The base of the ladder is pulled away from the wall at a rate of 4 ft/sec. How fast is the top of the ladder sliding down the wall when the base is 10 ft from the wall?

\[y = y(t) \]

\[x = x(t) \]

Known: \(\frac{dx}{dt} = 4 \)

Find: \(\frac{dy}{dt} \) when \(x = 10 \)

Relationship between \(x(t) \) and \(y(t) \) (Pythagorean Theorem):

\[x^2 + y^2 = 26^2 \]

Differentiate with respect to \(t \):

\[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \]

So

\[\frac{dy}{dt} = - \frac{x}{y} \frac{dx}{dt} \]

Note: When \(x = 10 \), \(x^2 + y^2 = 26^2 \) gives \(10^2 + y^2 = 26^2 \)

So \(y = 24 \).

\[\frac{dy}{dt} = - \frac{10}{24} \frac{1}{y} = - \frac{5}{3} \text{ ft/sec} \]
4. A BALLOON IS RISING STRAIGHT UP FROM A LEVEL FIELD AND IS BEING TRACKED BY A CAMERA 500 FT FROM THE POINT OF LIFT OFF. AT THE INSTANT WHEN THE CAMERA'S ANGLE OF ELEVATION IS $\frac{\pi}{4}$, THAT ANGLE IS INCREASING AT A RATE OF 0.14 RADIANS/MIN. HOW FAST IS THE BALLOON RISING AT THAT INSTANT?

\[y = y(t) \]

\[\theta = \theta(t) \]

\[\frac{d\theta}{dt} = 0.14 \text{ when } \theta = \frac{\pi}{4} \]

KNOWN:

FIND:

\[\frac{dy}{dt} \text{ when } \theta = \frac{\pi}{4} \]

RELATIONSHIP BETWEEN $\theta(t)$ AND $y(t)$ (DEFINITION OF $\tan \theta$)

\[\tan \theta = \frac{y}{500} \Rightarrow \]

\[y = 500 \tan \theta \]

DIFFERENTIATE WITH RESPECT TO t:

\[\frac{dy}{dt} = 500 \sec^2 \theta \frac{d\theta}{dt} \]

\[= 500 (2) (0.14) \]

\[= 140 \text{ FT/MIN} \]
5. Water is running out of a conical funnel at a rate of 1 in3/sec. If the altitude of the funnel is 8 in and the radius of its base is 4 in, how fast is the water level dropping when it is 2 in from the top?

\[V = V(t) \]
\[x = x(t) \]
\[y = y(t) \]

Note: It may not be obvious at this point that we need \(x = x(t) \) (radius of the water level at time \(t \)). Since \(\frac{dV}{dt} \) is given and \(\frac{dy}{dt} \) is requested, the reason is in the formula for the volume of a cone:

\[V = \frac{1}{3} \pi r^2 h \]

which requires both the altitude and the radius.
\[\frac{dv}{dt} = \frac{\pi}{12} (3y^2 \frac{dy}{dt}) = \frac{\pi}{4} y^2 \frac{dy}{dt} \]

so

\[\frac{dy}{dt} = \frac{\frac{dv}{dx}}{\frac{\pi}{4} y^2} = -\frac{1}{\frac{\pi}{4} (x^2)} = -\frac{1}{\pi} \text{ m/sec} \]

6. A MAN 6 FT TALL IS WALKING AT 3 FT/SEC TOWARD A STREETLIGHT 18 FT HIGH. HOW FAST IS THE LENGTH OF HIS SHADOW CHANGING?

\[l = l(t) = \text{LENGTH OF SHADOW AT TIME } t \]

\[x = x(t) \]

SIMILAR TRIANGLES \[\frac{l}{6} = \frac{x}{18} \Rightarrow l = \frac{1}{3} x \]

KNOWN: \[\frac{dx}{dt} = -3 \]

FIND: \[\frac{dl}{dt} \]

RELATIONSHIP BETWEEN \(l(t) \) AND \(x(t) \): \[l = \frac{1}{3} x \]

DIFFERENTIATE WITH RESPECT TO \(t \):

\[\frac{dl}{dt} = \frac{1}{3} \frac{dx}{dt} = \frac{1}{3} (-3) = -1 \text{ FT/SEC} \]