Define \(f \) and \(g \) and find their domain.

\[
(f \circ g)(x) = f(g(x)) = f\left(\sqrt{x-1}\right) = 1 - \sqrt{x-1}
\]

Solution:

To find the domain of \(f \circ g \), we need to

- examine the domain of \(f \) and \(g \).

Note: We can't simplify this any further.

Domain of \(g \):

\[
\sqrt{x-1} \geq 0 \Rightarrow x - 1 \geq 0 \Rightarrow x \geq 1
\]

Domain of \(f \):

\[
1 - \sqrt{x-1} \geq 0 \Rightarrow \sqrt{x-1} \leq 1 \Rightarrow x - 1 \leq 1 \Rightarrow x \leq 2
\]

Therefore, the domain of \(f \circ g \) is \([1, 2] \).
Recall: The domain of fog is all x in the domain of g such that g(x) is in the domain of f.

\[(0, \infty) \cap (-\infty, -1] \cup [1, \infty) \]

\[1 \leq x \leq 4 \]

\[1 \leq x \leq 0 \]

\[1 \leq x \leq 2 \]

\[x \leq 0 \]

\[0 \leq 1 - x \leq 1 \]
We want:

\[1 \nRightarrow 1 - x \]

So we want:

\[1 \nRightarrow 1 - x \nLeftarrow 1 \]

\[\Rightarrow 1 \nRightarrow 1 - x \]

Such that \(g(x) = 1 - x \) is in \((\alpha, 1] \), \(\alpha \) is in \((\alpha, \infty) \)

So we want all \(x \) in \((-\infty, 1] \cup [1, \infty) \).
So the domain of $f o g$ is: $[-1, 1] \cup (1, \infty)$

Look at the intersection of these real number lines:

\[-\infty \leq x \leq 1\] \quad \text{and} \quad \frac{-1}{2} \leq y \leq \infty \]

\[-\infty \leq x \leq 1\]

\[-\infty \leq x \leq 1\]

So we want x in $(-\infty, -1] \cup (1, \infty)$