$\frac{\sin x}{1} = \csc x$

$\frac{\cos x}{1} = \sec x$

$\frac{\sin x}{\cos x} = \tan x$

$\frac{\cos x}{\sin x} = \cot x$

Definitions you must know:

Appendix A: Quick Trigonometry Review
\(1 + \cot^2 \theta = \csc^2 \theta \)

\(\tan^2 \theta + 1 = \sec^2 \theta \)

\(\sin^2 \theta - \cos^2 \theta = 1 \)

Divide \(1\) by \(\sin^2 \theta\) to get

\(\sin \theta = (\sin \theta)^2 \), not \(\sin \theta^2\)

Notation:

\(\theta\) \(\sin \theta\) \(\cos \theta\) \(\csc \theta\) \(\sec \theta\) \(\tan \theta\)

Pythagorean Identities:

- \(\sin^2 \theta + \cos^2 \theta = 1\)
- \(1 + \cot^2 \theta = \csc^2 \theta\)
- \(\tan^2 \theta + 1 = \sec^2 \theta\)
All of these identities (and more) are in the back cover of your textbook.

\[
\begin{align*}
\cos 2\theta &= 2\cos^2 \theta - 1 \\
\sin 2\theta &= 2\sin \theta \cos \theta \\
\cos 2\theta &= \cos^2 \theta - \sin^2 \theta
\end{align*}
\]

Use 1 to get

Double-Angle Identities
In first quadrant (30°, 45°, 60°):

- All of the trig functions at the base angle:
 - \sin = opp/hyp
 - \cos = adj/hyp
 - \tan = opp/adj

Option (1): Use right triangles:

- $\frac{\sin}{\cos} = \frac{1}{\sqrt{2}}$
- $\frac{\tan}{\cos} = \frac{1}{\sqrt{3}}$
\[1 = \frac{2}{2} = \frac{2}{h} = \cos \theta. \]

\[\frac{2}{1} = \frac{2}{h} = \sin 36^\circ. \]

\[e.g. \sin 36^\circ \]

\[\begin{array}{c}
 2 \\
 \hline
 0 & 1 & 2 & 3 & 4 \\
 0 & 0.30 & 0.45 & 0.60 & 0.90 \\
 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
 0 & 0.25 & 0.50 & 0.75 & 1.00 \\
\end{array} \]

Oppose (c2): Use following chart.
Angles in other quadrants

Know where the trig functions are positive

\[\begin{array}{c|cc}
 & I & II \\
 \hline
 S & A & T \\
 C & & IV \\
\end{array} \]

To evaluate a trig function at any angle \(\theta \):

1. Evaluate at the reference angle \(\theta' \)
2. Affix appropriate sign (+ or -) based on the quadrant of the terminal side of the original angle \(\theta \).
\[z = \frac{\cos \frac{3\pi}{4}}{\sin \frac{\pi}{4}} = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{\sqrt{2}}} = -2 \]

So \(\sec \frac{3\pi}{4} = \frac{\sqrt{2}}{\frac{1}{\sqrt{2}}} = \frac{\sqrt{2}}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{2} \)

\[\frac{z}{\sqrt{2}} = \frac{\sqrt{2}}{\frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \frac{\sqrt{2}}{2} \]

Find \(\sin \frac{3\pi}{4} \)

Example: Find \(\sin \frac{3\pi}{4}, \cos \frac{3\pi}{4}, \sec \frac{3\pi}{4} \)
Range: \([-1, 1]\]

Domain: All reals

\(f(x) = \cos x \)

Range: \([-1, 1]\]

Domain: All reals

\(f(x) = \sin x \)

You should know the graphs of

Quadrant Angles (\(\ldots, -\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi, \ldots \))
Domain: all reals

Range: \(\frac{2}{k} \pi \) for any integer \(k \), where \(k \) is an integer

\(f(x) = \tan x \) as well

You should know the graph of
To evaluate at any angle (including quadrant angles), you can use Option (3): The unit circle.