Chapter 10.2: Polar Coordinates

Rectangular Coordinates

![Rectangular Coordinate System]

Polar Coordinates:

![Polar Coordinate System]
With polar coordinates a point P does not have a unique (r, θ)-pair.

E.g. $(1, \frac{\pi}{4})$

Can also be described as

$(1, \frac{\pi}{4} + 2\pi)$

Or as $(1, \frac{\pi}{4} - 2\pi)$ (so θ can be negative)

Or $(1, \frac{\pi}{4} + 2\pi k)$ for any integer k
Also, r can be negative,

e.g. $(-1, \frac{5\pi}{4})$

When $r < 0$, we go $1r$ units in the "opposite" direction of θ, i.e. $\theta \pm \pi$

Practice: Describe P with two other (r, θ) pairs

Note: this is same point P from earlier.
Transformation Equations

Polar \Rightarrow Rectangular

\[x = r \cos \theta \]
\[y = r \sin \theta \]

Rectangular \Rightarrow Polar

\[r^2 = x^2 + y^2 \]
\[\tan \theta = \frac{y}{x} \]

Example: Convert \((7, \frac{2\pi}{3}) \) to rectangular coordinates

\[x = 7 \cos \frac{2\pi}{3} = 7 \left(-\cos \frac{\pi}{2}\right) = 7 \left(-\frac{1}{2}\right) = -\frac{7}{2} \]
\[y = 7 \sin \frac{2\pi}{3} = 7 \left(\sin \frac{\pi}{3}\right) = 7 \left(\frac{\sqrt{3}}{2}\right) = \frac{7\sqrt{3}}{2} \]

So \((7, \frac{2\pi}{3}) = \left(-\frac{7}{2}, \frac{7\sqrt{3}}{2}\right) \)
Example: Convert \((-8, -8)\) to polar coordinates

Assume \(r \geq 0\) and give two solutions:

1. \(0 \leq \theta < 2\pi\)
2. \(-2\pi \leq \theta < 0\)

\[r = \sqrt{(-8)^2 + (-8)^2} = \sqrt{64+64} = 8\sqrt{2}\]

\[\tan \theta = \frac{-8}{-8} = 1\]

Note: \(\tan \frac{\pi}{4} = 1\) but since \(r \geq 0\) that would give a point in first quadrant but \((-8, -8)\) is in the third quadrant.

So \(\theta = \frac{5\pi}{4}\) or \(\theta = -\frac{3\pi}{4}\)

Solutions:

1. \((8\sqrt{2}, \frac{5\pi}{4})\)
2. \((8\sqrt{2}, -\frac{3\pi}{4})\)
Polar Curves (usually of form \(r = f(\theta) \))

Note: See pre-printed notes for more details

Examples

(1) \(r = 5 \)
Circle

 Center: \((0,0)\)
 Radius: 5

Convert to rectangular coordinates

\[r = 5 \implies r^2 = 5^2 \implies x^2 + y^2 = 5^2 \]

In general, \(r = a \) is a circle with

 Center \((0,0)\) and a radius of \(a\)

One revolution: \(0 \leq \theta \leq 2\pi \)

(or any interval of length \(2\pi\))
(2) \(\theta = \frac{\pi}{6} \) Line

In general, \(\theta = \theta_0 \) is a line

\[
\begin{align*}
\theta &= \frac{\pi}{6} \\
\theta &= \theta_0
\end{align*}
\]

(3) \(r = 3 \sin \theta \) (see pre-printed notes)

In general, \(r = \pm a \sin \theta \), \(r = \pm a \cos \theta \) \((a > 0)\) are circles but only need \(0 \leq \theta \leq \pi \) (or any interval of length \(\pi \)) for one revolution.

\[
\begin{align*}
\text{a} & \quad \text{a} & \quad \text{a} & \quad \text{a} \\
\text{r} = a \sin \theta & \quad \text{r} = -a \sin \theta & \quad \text{r} = a \cos \theta & \quad \text{r} = -a \cos \theta
\end{align*}
\]
(4) $r = 2 - 2\cos \theta = 2(1 - \cos \theta)$

(see pre-printed notes)

In general, $r = a(1 \pm \cos \theta)$, $r = a(1 \pm \sin \theta)$ are **cardioids**. One revolution: $0 \leq \theta \leq 2\pi$

\[r = a(1 + \cos \theta) \quad r = a(1 - \cos \theta) \]

\[r = a(1 + \sin \theta) \quad r = a(1 - \sin \theta) \]
Cardioids are a special case of
\[r = a \pm b \cos \theta, \quad r = a \pm b \sin \theta \quad (a, b > 0) \]
where \(a = b \). These curves are called \textit{limacons}.

\[r = 1 + 2 \cos \theta \]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>1</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-1</td>
</tr>
<tr>
<td>(\frac{3\pi}{2})</td>
<td>1</td>
</tr>
</tbody>
</table>

\(r = 1 + 2 \cos \theta \)
(5) \(r = 4 \cos 2\theta \) (see pre-printed notes)

In general, \(r = a \cos n\theta \), \(r = a \sin n\theta \) \((a > 0, \ n \geq 2)\) are roses.

\(n \) odd \(\Rightarrow \) \(n \) petals
\(0 \leq \theta \leq \pi \) for one revolution

\(n \) even \(\Rightarrow \) \(2n \) petals
\(0 \leq \theta \leq 2\pi \) for one revolution
Additional Example:

Sketch \(r = 2\sin 3\theta \)

Rose with 3 petals, requires \(0 \leq \theta \leq \pi \) for one full trace

Find "tips" of petals:

\[
\sin 3\theta = 1, \quad \sin 3\theta = -1
\]

\[
3\theta = \frac{\pi}{2}, \frac{5\pi}{2} \quad 3\theta = \frac{3\pi}{2}
\]

\[
\theta = \frac{\pi}{6}, \frac{5\pi}{6} \quad \theta = \frac{3\pi}{6} = \frac{\pi}{2}
\]