Chapter 9.3: Modeling With Differential Equations

(1) **Exponential Growth Model**

- models simple population growth where the rate of growth is proportional to the size of the population, i.e., the larger the population, the more rapidly it grows.

Let \(y = y(t) \) be the population at time \(t \)

\(y(0) = y_0 \) be the initial population

\[
\begin{cases}
\frac{dy}{dt} = ky, \quad k > 0 \\
y(0) = y_0
\end{cases}
\]

\(k \) is a constant of proportionality called the growth constant.

Solve this initial-value problem by separation of variables.
\[
\frac{dy}{dt} = ky
\]
\[
\frac{dy}{y} = k\, dt
\]

We assume \(y > 0 \)

(or else we have a boring population)

\[
\int \frac{dy}{y} = \int k\, dt
\]

\[
\ln y = kt + C
\]

\[
y = e^{kt+C} = e^{kt}e^C = Ce^{kt}
\]

Now \(y(0) = y_0 \) so

\[
y_0 = Ce^0 = C \quad \Rightarrow \quad C = y_0
\]

Solution: \(y(t) = y_0e^{kt} \)
Example: An E-coli cell divides into 2 cells every 20 minutes. Let \(y = y(t) \) be the number of cells after \(t \) minutes.

(a) Find formula for \(y(t) \).

\[y(t) = y_0 e^{kt} \] \(y_0 = 1 \)

\[y = e^{kt} \]

Given \(y(20) = 2 \) so

\[2 = e^{20k} \]

\[\ln 2 = \ln e^{20k} = 20k \]

\[k = \frac{\ln 2}{20} \]

So

\[y(t) = e^{\frac{\ln 2}{20} t} = (e^{\ln 2})^{\frac{t}{20}} = 2^{\frac{t}{20}} \]
(b) How many cells will there be after 2 hours?

\[2 \text{ hours} = \frac{120}{60} = 2^6 = 64 \text{ cells} \]

(c) How long before there are 1,000,000 cells?

\[1,000,000 = 2^{\frac{t}{20}} \]

\[\ln 1,000,000 = \ln 2^{\frac{t}{20}} = \frac{t}{20} \ln 2 \]

So \[t = 20 \frac{\ln 1,000,000}{\ln 2} \approx 399 \text{ minutes} \]

\[\text{Careful, there is no law of logarithms to simplify this.} \]
(2) **Logistic Model**

- a more realistic population model where the population eventually levels off to the **carrying capacity** L of the system.

\[
\begin{aligned}
\frac{dy}{dt} &= k\left(1 - \frac{y}{L}\right)y, \quad k > 0 \\
y(0) &= y_0
\end{aligned}
\]

Note: If $\frac{y}{L}$ is small, $\frac{dy}{dt} \approx ky$ (like exponential growth model).

- If $y = L$, $\frac{dy}{dt} = 0$
- If $y > L$, $\frac{dy}{dt} < 0$ (**the population has grown too large and thus decreases**)

Practice: Solve the initial-value problem. **Hint:** Use partial fractions.

Solution:

$$y(t) = \frac{y_0 L}{y_0 + (L - y_0) e^{-kt}}$$

Note: As $t \to \infty$, $y \to L$
(3) **Exponential Decay Model**

- Rate of decay is proportional to the amount of the substance present

\[y = y(t) \]: amount of substance that remains at time \(t \)

\[y(0) = y_0 \]: initial amount of substance

\[
\begin{cases}
\frac{dy}{dt} = -ky, \quad k > 0 \\
y(0) = y_0
\end{cases}
\]

- \(k \) is the decay constant

Practice: Show that the solution to this model is

\[y(t) = y_0 e^{-kt} \]

Question: How long before half of the original substance remains?
If half remains, we have \(y = \frac{1}{2} y_0 \)

So \(y = y_0 e^{-kt} \) becomes

\[
\frac{1}{2} y_0 = y_0 e^{-kt}
\]

\[
\frac{1}{2} = e^{-kt}
\]

\[
\ln \frac{1}{2} = \ln e^{-kt} = -kt
\]

\[
t = \frac{\ln \frac{1}{2}}{-k} = -\frac{\ln \frac{1}{2}}{k} = \frac{\ln \left(\frac{1}{2}\right)^{-1}}{k} = \frac{\ln 2}{k}
\]

So \(t = \frac{\ln 2}{k} \) is the half-life of the substance

Note this does not depend on \(y_0 \)

Exercise: Prove that in the exponential growth model, \(t = \frac{\ln 2}{k} \) is the amount of time it takes for the population to double. This is called the **doubling time** for the population.
Example: Suppose 30% of a radioactive substance decays in 5 years. Find the half-life of the substance.

30% decay \iff 70% remains

$y = y_0 e^{-kt}$

Given $y(5) = 0.7 y_0$

So $0.7 y_0 = y_0 e^{-5k}$

$0.7 = e^{-5k}$

$\ln 0.7 = -5k$

$k = \frac{\ln 0.7}{-5}$

So half-life is $\frac{\ln 2}{\ln 0.7} = \frac{-5 \ln 2}{\ln 0.7} \approx 9.7$ years
Since $t = \frac{\ln 2}{k}$ is the half-life, we can solve for the decay constant $k = \frac{\ln 2}{t}$, e.g. the half-life of carbon-14 is 5730 years, so $k = \frac{\ln 2}{5730} \approx 0.000121$ is the decay constant of carbon-14.

Example: Shroud of Turin (pg 607)

Test done in 1988, fibers in cloth contained 93% of the original carbon-14. Determine year of origin of cloth.

$$Y = Y_0 e^{-kt} = Y_0 e^{-0.000121t}$$

We want t when $\frac{Y}{Y_0} = 0.93$

$$0.93 = e^{-0.000121t} \Rightarrow \ln 0.93 = -0.000121t$$

$t \approx 600$ years \Rightarrow Year of origin $\approx 1988 - 600 = 1388$
(4) **Newton's Law of Cooling**

Fact: The rate at which a temperature of a cooling object decreases (or a warming object increases) is proportional to the difference between the temperature of the object and the temperature of the surrounding medium.

Example Set up an initial value problem for this model.

Let \(T(t) \) be the temperature of the object at time \(t \)

\(T(0) = T_o \) be the initial temperature of the object

\(T_m \) : constant temperature of surrounding medium

\[
\begin{align*}
\frac{dT}{dt} &= k (T_m - T), \quad k > 0 \\
T(0) &= T_o
\end{align*}
\]

Your homework problems ask you to solve this so you can answer questions about specific scenarios.