Max/Min Problems

Goal: Find relative and absolute extrema of functions of two variables

Review:

- Open interval \((a, b)\)
 - Find relative extrema
 1. Find critical points (CP's) on \((a, b)\)
 2. Test CP's
 - E.g., 2nd Derivative Test

- Closed interval \([a, b]\)
 - Find absolute extrema
 1. Find CP's on \([a, b]\)
 2. Compare \(f\)-values of CP's from (1) to \(f\)-values of endpoints.
New stuff:

Open Region
no boundary points

Closed region
includes boundary points

Finding Relative Extrema on Open Regions:

Procedure:
1. Find critical points, i.e. points where

\[
\begin{align*}
f_x &= 0 \\
f_y &= 0
\end{align*}
\]
(2) Test CP's with Second Partial Test

\[D(x, y) = f_{xx} f_{yy} - f_{xy} f_{yx} = f_{xx} f_{yy} - (f_{xy})^2 \]

Memory Trick: 2x2 determinant

\[D(x, y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} \]

Note: \(f_{xx} = \) concavity in \(x \)-direction
\(f_{yy} = \) concavity in \(y \)-direction

Theorem: If \(f_x(x_0, y_0) = f_y(x_0, y_0) = 0 \), then

1. \(D(x_0, y_0) > 0 \) and \(f_{xx}(x_0, y_0) > 0 \) [or \(f_{yy}(x_0, y_0) > 0 \)]
 then relative minimum at \((x_0, y_0) \)

2. \(D(x_0, y_0) > 0 \) and \(f_{xx}(x_0, y_0) < 0 \) [or \(f_{yy}(x_0, y_0) < 0 \)]
 then relative maximum at \((x_0, y_0) \)

3. \(D(x_0, y_0) < 0 \) \(\Rightarrow \) saddle point at \((x_0, y_0) \)

4. \(D(x_0, y_0) = 0 \) \(\Rightarrow \) test fails.
Examples: Find locations of all relative extrema and saddle points

1) \(f(x, y) = x^2 + y^2 \)

 1) Find CP's
 \[
 \begin{cases}
 f_x = 2x = 0 \\
 f_y = 2y = 0
 \end{cases} \Rightarrow \text{CP: } (0, 0)
 \]

 2) Test CP's
 \[
 f_{xx} = 2 \quad f_{yy} = 2 \quad f_{xy} = 0
 \]
 \[D(x, y) = (2)(2) - 0^2 = 4\]
 \[D(0, 0) = 4 > 0 \quad \Rightarrow \text{relative min at } (0, 0)\]
 \[f_{xx}(0, 0) = 2 > 0\]
\(f(x, y) = 4xy - x^4 - y^4 \)

\[
\begin{cases}
 f_x = 4y - 4x^3 = 0 \\
 f_y = 4x - 4y^3 = 0
\end{cases}
\implies
\begin{align*}
 y - x^3 &= 0 \\
 x - y^3 &= 0
\end{align*}
\]

So \(y = x^3 \implies x - x^9 = 0 \)
\(x(1 - x^8) = 0 \)

\(x = 0 \quad x = 1 \quad y = 0 \)
\(x = -1 \quad y = 1 \)

CP's: \((0, 0) \), \((1, 1) \), \((-1, -1) \)

\[f_{xx} = -12x^2 \quad f_{yy} = -12y^2 \quad f_{xy} = 4 \]

\[D(x, y) = (-12x^2)(-12y^2) - 4^2 = 144x^2y^2 - 16 \]

\[D(0, 0) = -16 < 0 \implies \text{saddle point at } (0, 0) \]

\[D(1, 1) = 144 - 16 > 0 \text{ and } f_{xx}(1, 1) = -12 < 0 \]
\[\implies \text{relative max at } (1, 1) \]

\[D(-1, -1) = 144 - 16 > 0 \text{ and } f_{xx}(-1, -1) = -12 < 0 \]
\[\implies \text{relative max at } (-1, -1) \]
Example: Find all points \((x,y,z)\) on the surface
\[z^2 - xy = 5 \] closest to origin

1. Write equation for quantity to be maximized or minimized
 Minimize distance
 \[
 L = \sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2}
 \]
 Easier to minimize
 \[L^2 = x^2 + y^2 + z^2 \]

2. Reduce to two variables
 \[
 z^2 - xy = 5 \implies z^2 = xy + 5
 \]
 So we want to minimize
 \[f(x,y) = x^2 + y^2 + xy + 5 \]

3. Proceed as in last two examples
 \[
 \begin{cases}
 f_x = 2x + y = 0 \implies y = -2x \\
 f_y = 2y + x = 0 \\
 \end{cases}
 \]
 So
 \[
 -4x + x = 0 \implies x = 0, y = 0 \quad CP: (0,0) \]
\[f_{xx} = 2 \quad f_{yy} = 2 \quad f_{xy} = 1 \]

\[\Delta(x, y) = (2)(2) - 1^2 = 3 \]

\[\Delta(0, 0) = 3 > 0 \quad \text{and} \quad f_{xx}(0, 0) = 2 > 0 \]

So relative minimum at \((0, 0)\)

(4) Answer the question!

\[x = 0, y = 0 \quad \Rightarrow \quad z^2 - xy = 5 \]

\[z^2 - 0 = 5 \quad \Rightarrow \quad z = \pm \sqrt{5} \]

Solution: \((0, 0, \sqrt{5}), (0, 0, -\sqrt{5})\)
Finding Absolute Extrema on Closed Regions

Example: Find the absolute extrema of \(z = f(x, y) = x^2 + y^2 \) on region \(R : \frac{x^2}{4} + \frac{y^2}{9} \leq 1 \)

Illustration

Two possible locations for absolute extrema

(1) critical points inside region

(2) boundary points
Procedure:

1. Find CP's inside \(\frac{x^2}{y} + \frac{y^2}{9} < 1 \)

 \[f(x,y) = x^2 + y^2 \]

 \[f_x = 2x = 0 \qquad \rightarrow \quad \text{CP: } (0,0) \]

 \[f_y = 2y = 0 \]

 which is inside \(\frac{x^2}{y} + \frac{y^2}{9} < 1 \)

 \[f(0,0) = 0 \]

2. "Test" boundary points, i.e. parametrize boundary and convert to a Calc I problem.

Boundary:

\[\frac{x^2}{4} + \frac{y^2}{9} = 1 \]

\[\left(\frac{x}{2} \right)^2 + \left(\frac{y}{3} \right)^2 = 1 \]

\[\frac{x}{2} = \cos t \quad \frac{y}{3} = \sin t \]

\[x = 2 \cos t \quad y = 3 \sin t \quad 0 \leq t \leq 2 \pi \]
Evaluate $f(x,y)$ on the boundary

\[z = f(2 \cos t, 3 \sin t) = (2 \cos t)^2 + (3 \sin t)^2 \]

\[z = 4 \cos^2 t + 9 \sin^2 t \]

Find absolute extrema of this on $[0, 2\pi]$.

\[\frac{dz}{dt} = 8 \cos t \cdot (-\sin t) + 18 \sin t \cos t = 10 \sin t \cos t \]

(i) Find CP's on $0 < t < 2\pi$

(ii) Check endpoints $t = 0$, $t = 2\pi$

(i) $\frac{dz}{dt} = 0 \implies \sin t \cos t = 0$

\[\sin t = 0 \quad \cos t = 0 \]

\[t = \pi, \quad t = \frac{3\pi}{2} \]

\[z(\pi) = 4(-1)^2 + 0 = 4 \]

\[z(\frac{3\pi}{2}) = 4 \]
\[z \left(\frac{\pi}{2} \right) = 0 + 9 \left(-1 \right)^2 \quad z \left(\frac{3\pi}{2} \right) = 9 \]

\[z \left(\frac{3\pi}{2} \right) = 0 + 9 \left(-1 \right)^2 \quad z \left(\frac{3\pi}{2} \right) = 9 \]

\(\text{At endpoints:} \)

\[z \left(0 \right) = 4 \quad z \left(2\pi \right) = 4 \]

Compare all values:

Absolute Min of 0 at \(t = 0, 0 \)

Absolute Max of 9 at \(t = \frac{\pi}{2}, \frac{3\pi}{2} \)

\[x = 2 \cos t, \quad y = 3 \sin t \]

\(t = \frac{\pi}{2}: \quad (0, 3) \quad t = \frac{3\pi}{2}: \quad (0, -3) \)

Exercise: Read through Example 5 pages 982-983

\(R \) is a triangular region