7) Prove ∀ n > 0, \(1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \)

Base Case: Prove \(P(1) \)

\[
1^2 = \frac{1(1+1)(2(1)+1)}{6} = \frac{(2)(3)}{6} = 1 \quad \checkmark
\]

\(\therefore P(1) \) is true

Inductive Step:

Assume \(P(k) \): \(1^2 + 2^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \) for some \(k > 0 \)

Show \(P(k+1) \): \(1^2 + 2^2 + \ldots + (k+1)^2 \)

\[
= \frac{(k+1)(k+2)(2k+3)}{6}
\]

So \(1^2 + 2^2 + \ldots + (k+1)^2 = 1^2 + 2^2 + \ldots + k^2 + (k+1)^2 \)

\[
= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \quad \text{by inductive hypothesis}
\]

\[
= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} = \frac{(k+1)\left[k(2k+1) + 6(k+1)\right]}{6}
\]
\[
\frac{(k+1) \left[2k^2 + 7k + 6 \right]}{6} = \frac{(k+1)(k+2)(2k+3)}{6}
\]

QED

29) Prove that \(\frac{n^2 > 5n+10}{P(n)} \) for \(n \geq 6 \)

Base Case: Prove \(P(7) \).
\[
7^2 > 5 \cdot 7 + 10
\]
\[
49 > 45 \quad \checkmark \quad \therefore \ P(7) \text{ is true}
\]

Inductive Step:

Assume \(P(k) \): \(k^2 > 5k + 10 \) for some \(k \geq 6 \)

Show \(P(k+1) \): \((k+1)^2 > 5(k+1) + 10 \)

So \((k+1)^2 = k^2 + 2k + 1 \)

\[
> (5k + 10) \quad + \quad 2k + 1 \quad \text{(by inductive hypothesis)}
\]
\[
> 5k + 10 + 12 + 1 \quad \text{(because } k \geq 6\text{)}
\]
\[
> 5k + 15
\]
\[
= 5(k+1) + 10
\]

QED
43) Prove that \(7^n - 2^n \) is divisible by 5 for \(n > 0 \)

\[P(n) \]

Base case: Prove \(P(1) \). \(7^1 - 2^1 = 5 \), which is clearly divisible by 5. \(\therefore P(1) \) is true.

Inductive step:
Assume \(P(k) \): \(7^k - 2^k \) is divisible by 5 for some \(k > 0 \)

\[\Rightarrow 7^k - 2^k = 5m \text{ for some } m \in \mathbb{Z} \]

\[\Rightarrow 7^k = 5m + 2^k \]

Show \(P(k+1) \): \(7^{k+1} - 2^{k+1} \) is divisible by 5.

So \(7^{k+1} - 2^{k+1} = 7 \cdot 7^k - 2 \cdot 2^k \)

\[= 7(5m + 2^k) - 2 \cdot 2^k \text{ (by inductive hypothesis)} \]

\[= 35m + 7 \cdot 2^k - 2 \cdot 2^k \]

\[= 35m + 2^k (7 - 2) \]

\[= 35m + 2^k (5) \]

\[= 5(7m + 2^k) \]

Since \((7m + 2^k) \in \mathbb{Z} \),

\(7^{k+1} - 2^{k+1} \) is divisible by 5.

QED
67) Prove that any amount of postage \(\geq 12 \) cents can be built using only 4-cent and 5-cent stamps.

Informal argument: Let \(P(n) \) be the statement that only 4-cent and 5-cent stamps are needed to build \(n \) cents worth of postage. If \(P(k-3) \) is true, then \(P(k+1) \) is true since if \((k-3)\) cents can be paid in this way, then \((k+1)\) cents can be paid in this way as well by simply adding an additional 4-cent stamp.

So we need the fourth previous statement, \(P(k-3) \), to prove \(P(k+1) \). So we will need 4 base cases. See pg 104 for a similar example.

Formal proof: Let \(P(n) \) be the statement that only 4-cent and 5-cent stamps are needed to build \(n \) cents worth of postage.

Base Cases Prove \(P(12), P(13), P(14), P(15) \)

\[
12 = 4 + 4 + 4; \quad 13 = 5 + 4 + 4; \quad 14 = 5 + 5 + 4; \quad 15 = 5 + 5 + 5
\]

\[
\therefore P(12), P(13), P(14), P(15) \text{ are all true.}
\]

Inductive Step: Assume \(P(r) \) true for all \(r, 12 \leq r \leq k \). Prove \(P(k+1) \).

Assume \(k+1 \geq 16 \) since we proved \(P(r) \) for \(r = 12, 13, 14, \) and 15. If \(k+1 \geq 16 \) then \(k-3 \geq 12 \) so by the inductive hypothesis \(P(k-3) \) is true, which means \((k-3)\) cents of postage is attainable with 4-cent and 5-cent stamps. Adding one more 4-cent stamp shows \((k+1)\) cents of postage is attainable in this way as well.

So \(P(k+1) \) is true.

QED