6) \(S = \{0, 2, 4, 6, 3\} \) \(T = \{1, 3, 5, 7, 3\} \)

b) \(\{(6,3), (2,1), (0,3), (4,5)\} \)
 - This is a function with domain \(S \) and codomain \(T \).
 - It is not a one-to-one function because \(0, 6 \in S \) have the same image in \(T \), namely \(3 \).
 - It is not an onto function because \(7 \in T \) has no preimage under the function.

d) \(\{(2,1), (4,5), (6,3)\} \)
 - This is not a function with domain \(S \) and codomain \(T \) because \(0 \in S \) is not associated with any element in \(T \).

8) \(f: \mathbb{N} \to \mathbb{N} \) where \(f \) is defined by
 \[f(x) = \begin{cases}
 x/2 & \text{if } x \text{ is even} \\
 x+1 & \text{if } x \text{ is odd}
 \end{cases} \]
 - \(f \) is a function.
 - \(f \) is not one-to-one because \(f(1) = f(4) = 2 \).
 - \(f \) is onto.
8) \(f : \mathbb{N} \to \mathbb{N} \) where \(f \) is defined by
\[
f(x) = \begin{cases}
 x+1 & \text{if } x \text{ is even} \\
 x-1 & \text{if } x \text{ is odd}
\end{cases}
\]
- \(f \) is a function
- \(f \) is one-to-one \(\Rightarrow f \) is a bijection and must have an inverse

Note that \(\forall x, y \in \mathbb{N} \) if \(f(x) = y \) then \(f(y) = x \).
Ex: \(f(0) = 1 \) and \(f(1) = 0 \), \(f(2) = 3 \) and \(f(3) = 2 \), etc.

We want an inverse function \(f^{-1} : \mathbb{N} \to \mathbb{N} \) such that if \(f(x) = y \) then \(f^{-1}(y) = x \). But \(f \) itself already has this property. So \(f^{-1} = f \), i.e., \(f \) is its own inverse.

23) \(-7 \mod 3 = 2 \) because \(-7 = 3(-2) + 2\)

36) \(f = (c, a, b, d) = (a \ b \ c \ d) \leftrightarrow \text{array form} \)
- \(\text{cycle form} \)

39) \((1, 2) \circ (1, 3) \circ (1, 4) \circ (1, 5)\)
\[
\begin{align*}
1 &\rightarrow 5 \rightarrow 5 \rightarrow 5 \rightarrow 5 \\
2 &\rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 2 \\
3 &\rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow 2 \\
4 &\rightarrow 4 \rightarrow 1 \rightarrow 3 \rightarrow 3 \\
5 &\rightarrow 1 \rightarrow 4 \rightarrow 4 \rightarrow 4
\end{align*}
\]
\(\text{working right to left} \)
\[= (1, 5, 4, 3, 2) \]
43) \(S = \{p, q, r\} \quad T = \{k, l, m, n\} \)

a) Total number of functions:
\[
4 \cdot 4 \cdot 4 = 4^3 = 64
\]

b) Total number of injective functions:
\[
4 \cdot 3 \cdot 2 = P(4, 3) = 24
\]