Rational Inner Functions on the Disk and on Polydisks

David Scheinker

Fix a rational inner function f on D with degree N. If one chooses any $N + 1$ distinct points x_1, \ldots, x_{N+1} on D, then the Nevanlinna-Pick problem on D with data x_1, \ldots, x_{N+1} and $f(x_1), \ldots, f(x_{N+1})$ has a unique solution. Furthermore, essentially every Nevanlinna-Pick problem on D with a unique solution arises this way. In this talk, we give some examples of Nevanlinna-Pick problems on D^n with $n > 1$ demonstrating the ways in which this behavior of rational inner functions on D fails to extend to D^n. We then introduce some definitions and theorems demonstrating the ways in which this behavior extends to 1 dimensional algebraic varieties passing through D^2.