MATH 200
WEEK 1- FRIDAY

DOT PRODUCTS AND PROJECTIONS
MAIN QUESTIONS FOR TODAY

- How is the **dot product** defined for vectors?
- How does it interact with other operations on vectors?
- What uses are there for the dot product?
DEFINITION

- The dot product is a new kind of operation in that it takes in two objects of one kind and yields an object of a different kind!

- It takes two vectors and gives a scalar

- Given \(\mathbf{v} = <v_1, v_2, v_3> \) and \(\mathbf{w} = <w_1, w_2, w_3> \), we define the dot product as follows

 \[\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + v_3w_3 \]

- E.g. If \(\mathbf{v} = <2, 1, -2> \) and \(\mathbf{w} = <3, -4, -1> \), then

 \[\mathbf{v} \cdot \mathbf{w} = (2)(3) + (1)(-4) + (-2)(-1) = 6 - 4 + 2 = 4 \]
Compute the following dot products:

\[\langle 1, 4, 5 \rangle \cdot \langle 2, 2, 1 \rangle \]

\[(3\hat{i} - 2\hat{k}) \cdot (\hat{i} - 10\hat{j} + \hat{k}) \]
The dot product is called a product because of how it interacts with vector addition:

\[\vec{a} \cdot (\vec{v} + \vec{w}) = \vec{a} \cdot \vec{v} + \vec{a} \cdot \vec{w} \]

It’s commutative (meaning the order in which we multiply doesn’t matter):

\[\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v} \]

And it can be used to define the norm of a vector more succinctly:

\[\vec{v} \cdot \vec{v} = ||\vec{v}||^2 \]

For each property, you should confirm with examples
WHAT DOES THIS DO FOR US?

▸ Remember of the Law of Cosines…?

▸ Of course you do - it’s a generalized Pythagorean Theorem

\[c^2 = a^2 + b^2 - 2ab \cos \theta \]
Let’s redraw the law of cosines diagram with vectors instead:

\[\mathbf{v} - \mathbf{w} \]

\[c^2 = a^2 + b^2 - 2ab \cos \theta \]

\[\| \mathbf{v} - \mathbf{w} \|^2 = \| \mathbf{v} \|^2 + \| \mathbf{w} \|^2 - 2 \| \mathbf{v} \| \| \mathbf{w} \| \cos \theta \]
\[||\vec{v} - \vec{w}||^2 = ||\vec{v}||^2 + ||\vec{w}||^2 - 2||\vec{v}||||\vec{w}|| \cos \theta \]

EXPAND THIS TERM

\[||\vec{v} - \vec{w}||^2 = (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) \]

PLUG BACK IN

\[||\vec{v}||^2 - 2\vec{v} \cdot \vec{w} + ||\vec{w}||^2 = ||\vec{v}||^2 + ||\vec{w}||^2 - 2||\vec{v}||||\vec{w}|| \cos \theta \]
QUICK CONCLUSIONS FROM THE DOT PRODUCT

- Say we compute the dot product of two vectors \mathbf{v} and \mathbf{w}. The result will be **positive**, **negative**, or **zero**.

- What can we say about the angle between the vectors in each case?
 - If $\mathbf{v} \cdot \mathbf{w} > 0$: $\cos \theta > 0$ so the angle is acute
 - If $\mathbf{v} \cdot \mathbf{w} < 0$: $\cos \theta < 0$ so the angle is obtuse
 - If $\mathbf{v} \cdot \mathbf{w} = 0$: $\cos \theta = 0$ so the angle is 90°

- We use the word **orthogonal** to refer to vectors that form a 90° angle.

Reminder:

$$
\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| ||\mathbf{w}||}
$$
PROJECTIONS

- Say we have two vectors \mathbf{v} and \mathbf{b}, and we want to do the following:
 - Draw \mathbf{v} and \mathbf{b} tail to tail
 - For the sake of this illustration make \mathbf{b} longer than \mathbf{v} though it doesn’t matter
 - Drop a line that’s perpendicular to \mathbf{b} from the tip of \mathbf{v}
 - Find the vectors that form the right triangle that results

THIS VECTOR IS CALLED THE PROJECTION OF \mathbf{v} ONTO \mathbf{b}
We write the projection of \(\mathbf{v} \) onto \(\mathbf{b} \) as \(\text{proj}_b \mathbf{v} \).

From the picture it should be clear that
\[
||\text{proj}_b \mathbf{v}|| = ||\mathbf{v}|| \cos \theta
\]

\(\mathbf{b}/||\mathbf{b}|| \) is a unit vector in the direction of \(\mathbf{b} \) so...

\[
\text{proj}_b \mathbf{v} = ||\text{proj}_b \mathbf{v}|| \frac{\mathbf{b}}{||\mathbf{b}||}
\]
Putting it all together...

\[||\overrightarrow{\text{proj}_b \vec{v}}|| = ||\vec{v}|| \cos \theta \]

\[\overrightarrow{\text{proj}_b \vec{v}} = ||\overrightarrow{\text{proj}_b \vec{v}}|| \frac{\vec{b}}{||\vec{b}||} \]

\[\overrightarrow{\text{proj}_b \vec{v}} = ||\vec{v}|| \frac{\vec{b}}{||\vec{b}||} \cos \theta \]

\[\overrightarrow{\text{proj}_b \vec{v}} = ||\vec{v}|| \frac{\vec{b}}{||\vec{b}||} \left(\frac{\vec{v} \cdot \vec{b}}{||\vec{v}|| ||\vec{b}||} \right) \]

\[\overrightarrow{\text{proj}_b \vec{v}} = \left(\frac{\vec{v} \cdot \vec{b}}{||\vec{b}||^2} \right) \vec{b} \]
DISTANCE FROM A POINT TO A LINE

- Let’s use projections to find the distance from a point to a line.
 - Find the (shortest) distance from the point $A(3,1,-1)$ to the line containing $P_1(6,3,0)$ and $P_2(0,3,3)$
- We’re all about vectors now so let’s draw some...