Section 13.8: Relative \& Absolute Extrema for Functions of Two Variables

From Calc I:

Relative Extrema:

1. Find critical pts. i.e. pts where \(f' = 0 \) or \(f' \) is undefined.

2. Use 1st or 2nd Deriv. Test to determine if max or min.

Absolute Extrema (on a closed interval):

1. Find critical points.

2. Evaluate \(f \) at endpoints.

3. Compare values from 1 \& 2.

Open \& Closed Regions:

Open: Does not include the boundary.

Closed: Includes boundary.

Critical Points: \((x_c, y_c)\)

\[
\begin{align*}
&f_x(x_c, y_c) = 0 \\
&f_y(x_c, y_c) = 0
\end{align*}
\]
2nd Partial Test:

\[D(x,y) = \frac{\partial^2}{\partial x \partial y}(x,y) - \frac{\partial^2}{\partial y \partial x}(x,y) \]

\[= \begin{vmatrix} \frac{\partial^2}{\partial x \partial x} & \frac{\partial^2}{\partial x \partial y} \\ \frac{\partial^2}{\partial y \partial x} & \frac{\partial^2}{\partial y \partial y} \end{vmatrix} \]

If...

1. \(D(x_c, y_c) > 0 \) and \(\frac{\partial^2}{\partial x \partial y}(x_c, y_c) > 0 \) (or \(\frac{\partial^2}{\partial y \partial y}(x_c, y_c) < 0 \))
 THEN REL. MIN AT \((x_c, y_c)\)

2. \(D(x_c, y_c) > 0 \) and \(\frac{\partial^2}{\partial x \partial y}(x_c, y_c) < 0 \) (or \(\frac{\partial^2}{\partial y \partial y}(x_c, y_c) > 0 \))
 THEN REL. MAX AT \((x_c, y_c)\)

3. \(D(x_c, y_c) < 0 \), THEN \((x_c, y_c)\) IS A SADDLE POINT

4. \(D(x_c, y_c) = 0 \), THE TEST IS INCONCLUSIVE

*Note: The reason we can look at \(\frac{\partial^2}{\partial x \partial y} \) or \(\frac{\partial^2}{\partial y \partial y} \) in cases 1 & 2:

\[\left[\frac{\partial^2}{\partial x \partial y}(x,y) \right]^2 > 0 \] (Any real \(\neq 0 \) is pos.)

If \(D > 0 \), \(\frac{\partial^2}{\partial x \partial y} \) \(\frac{\partial^2}{\partial y \partial y} \) MUST BE POSITIVE.

\(\frac{\partial^2}{\partial x \partial x} \) \(\frac{\partial^2}{\partial y \partial y} \) IS POSITIVE IF \(\frac{\partial^2}{\partial x \partial y} \) \(\frac{\partial^2}{\partial y \partial y} \) HAVE SAME SIGN

Ex: \(f(x,y) = x^2 + y^2 - 3x - 4y + 6 \)

FIND CRITICAL POINTS
\[\frac{p_x}{x} = 2x - 3 \]
\[2x - 3 = 0 \]
\[x = \frac{3}{2} \]

\[\frac{p_y}{y} = 2y - 4 \]
\[2y - 4 = 0 \]
\[y = 2 \]

\[(\frac{3}{2}, 2) \]

- **Evaluate** \(D(\frac{3}{2}, 2) \)

 \[\frac{p_{xx}}{x} = 2 \]

 \[\frac{p_{yy}}{y} = 2 \]

 \[\frac{p_{xy}}{xy} = 0 \]

 \[D(\frac{3}{2}, 2) = 2(2) - 0 = 4 > 0 \]

 \[\frac{p_{xx}}{x}(\frac{3}{2}, 2) = 2 > 0 \]

 Relative min at \((\frac{3}{2}, 2) \)

- **Ex: \(f(x, y) = x^2y - 6y^2 - 3x^2 \)**

- **Critical Points: \(\frac{p_x}{x} = 2xy - 6x \)**

 \[2xy - 6x = 0 \]

 \[2x(y - 3) = 0 \]

 \[x = 0, y = 3 \]

- **Critical Points: \(\frac{p_y}{y} = x^2 - 12y \)**

 \[x^2 - 12y = 0 \]

 \[\text{If } x = 0; -12y = 0 \]

 \[y = 0 \]

 \[\text{If } y = 3; x^2 - 12(3) = 0 \]

 \[x^2 = 36 \]

 \[x = \pm 6 \]

- **Critical Points:** \((0, 0), (6, 3), (-6, 3) \)

- **2nd Partial Test:**

 \[\frac{p_{xx}}{x} = 2y - 6 \]

 \[\frac{p_{yy}}{y} = -12 \]

 \[\frac{p_{xy}}{xy} = 2x \]

 Notice: \(\frac{p_{yx}}{yx} = 2x \) too
\begin{align*}
(0,0): & \quad D(0,0) = f_{xx}(0,0) f_{yy}(0,0) - f_{xy}^2(0,0) \\
& = (-6)(-12) - 0 = 72 > 0 \\
& \Rightarrow f_{xx}(0,0) = -6 < 0 \\
& \text{RELATIVE MAX AT } (0,0) \\
(6,3): & \quad D(6,3) = (6)(-12) - (2(6))^2 \\
& = -144 < 0 \\
& \text{SADDLE POINT AT } (6,3) \\
(-6,3): & \quad D(-6,3) = (6)(-12) - (2(-6))^2 \\
& = -144 < 0 \\
& \text{SADDLE POINT AT } (-6,3) \\

*GRAPH OF \ z = \frac{1}{10} f(x,y) *
\end{align*}
Finding Absolute Extrema:

Ex: Find abs. extrema of \(f(x,y) = x^2 y^2 \) on \(R: \frac{x^2}{4} + \frac{y^2}{9} \leq 1 \)

* abs. extrema will occur at either
 (1) Critical Points inside region
 or (2) Boundary Points

(1) \(\frac{\partial}{\partial x} = 2x \quad \frac{\partial}{\partial y} = 2y \)

2x = 0 \quad 2y = 0

x = 0 \quad y = 0

Only critical point: (0,0)

(2) Boundary: \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \)

* To see what function values on boundary look like we "plug the boundary into the function".

\[\frac{x^2}{4} + \frac{y^2}{9} = 1 \implies \frac{y^2}{9} = 1 - \frac{x^2}{4} \]

\[y^2 = 9 - \frac{9x^2}{4} \]

\[f \text{ on Boundary: } f(x) = x^2 + 9 - \frac{9}{4} x^2 \]

\[= 9 - \frac{5}{4} x^2 \quad [-2, 2] \]

This is a Calc I abs. ext. problem

Critical Points: \(f'(x) = -\frac{5}{2} x \)

- \(\frac{5}{2} x = 0 \)

- \(x = 0 \)

Note: When \(x = 0 \) on boundary \(y^2 = 9 - \frac{9}{4} (0) \)

- \(y^2 = 9 \)

- \(y = 3, -3 \)
TEST VALUES:
\[
\begin{align*}
B(0) &= 9 \\
B(2) &= 4 \\
B(-2) &= 4
\end{align*}
\]

SO EVALUATING \(B(0)\) IS THE SAME AS EVALUATING \(f(0,3)\) OR \(f(0,-3)\).

SIMILARLY: \(B(2) = 4 \implies f(2,0) = 4\)
\(B(-2) = 4 \implies f(-2,0) = 4\)

ABSOLUTE MAX: 9 AT (0, 3) & (0, -3)

ABSOLUTE MIN: 0 AT (0, 0)

\[f(x) = x^2 - 4xy + 5y^2 - 8; \text{ } R: \text{ TRIANGLE W/ VERTICES } (0,0), (3,0), (3,3)\]

(1) CRITICAL POINTS:
\[
\begin{align*}
\frac{\partial f}{\partial x} &= 2x - 4y \\
\frac{\partial f}{\partial y} &= -4x + 10y
\end{align*}
\]
\[
\begin{align*}
2x - 4y &= 0 \\
-4x + 10y &= 0
\end{align*}
\]

SOLVE AS SYSTEM OF EQS:

\[
\begin{align*}
2x - 4y &= 0 \\
-4x + 10y &= 0
\end{align*}
\]

\[
\begin{align*}
2y &= 0 \\
y &= 0
\end{align*}
\]

\[
\begin{align*}
2x - 4(0) &= 0 \\
x &= 0
\end{align*}
\]

CRITICAL POINT IS (0,0)

* THIS POINT LIES ON THE BOUNDARY OF R *

(2) RESTRICT \(f\) TO THE BOUNDARY: WE WILL HAVE TO DO THIS IN 3 PIECES

\[
\begin{align*}
y &= x, \text{ } 0 \leq x \leq 3
\end{align*}
\]

\[
\begin{align*}
B(x) &= x^2 - 4x(x) + 5x^2 - 8 \\
&= 2x^2 - 8 \\
B'(x) &= 4x
\end{align*}
\]

CRIT. PT. \(x = 0\)

\[
\begin{align*}
B(0) &= -8 = f(0,0) \\
B(3) &= 10 = f(3,3)
\end{align*}
\]
(i) $y = 0$, $0 \leq x \leq 3$

$b(x) = x^2 - 8$

$b'(x) = 2x$

$2x = 0$

(ii) $x = 3$, $0 \leq y \leq 3$

$\beta(y) = 9 - 12y + 5y^2 - 8$

$\beta(y) = 5y^2 - 12y + 1$

$\beta'(y) = 10y - 12$

$10y - 12 = 0$

$y = \frac{6}{5}$

Absolute Max: 10 at $(3,3)$

Absolute Min: -8 at $(0,0)$

Centered Point $x = 0$

$B(0) = -8 = f(0,0)$

$B(3) = 1 = f(3,0)$

$\beta(0) = 1 = \frac{0}{(3,0)}$

$\beta(3) = 10 = \frac{2}{(3,3)}$

$\beta(\frac{6}{5}) = -\frac{31}{5}$