Splitting Fields for Characteristic Polynomials of Matrices with Entries in a Finite Field.

Eric Schmutz

Mathematics Department, Drexel University, Philadelphia, Pennsylvania, 19104.

Abstract

Let $M_n(q)$ be the set of all $n \times n$ matrices with entries in the finite field F_q. With asymptotic probability one, the characteristic polynomial of a random $A \in M_n(q)$ does not have all its roots in F_q. Let $X_n(A)$ be the degree of the splitting field of the characteristic polynomial of A, and let μ_n be the average degree:

$$\mu_n = \frac{1}{|M_n(q)|} \sum_A X_n(A).$$

Using a theorem of Reiner, we prove that

$$\mu_n = e^{c_0\sqrt{n/\log n}+o(1)},$$

where c_0 is an explicit constant.

Key words: Finite field, splitting field, random matrix, characteristic polynomial

1 Introduction and notation

If $f \in F_q[x]$, let $X(f)$ be the degree of the splitting field of f, i.e. the smallest d such that f factors as a product of linear factors $f = \prod_i (x - r_i)$, with all the roots r_i in F_{q^d}. Mignotte and Nicolas [11],[14], and Dixon and Panario [2] asked how large $X(f)$ is for a typical polynomial f. More precisely, let $P_{n,q}$ be the set of all monic degree n polynomials with coefficients in the finite field F_q, and let $P_{n,q}$ be the uniform probability measure: $P_{n,q}(\{f\}) = q^{-n}$ for all f. They studied the asymptotic distribution of the random variable $\log X$, and noted the strong analogies between this problem and the “Statistical

Email address: Eric.Jonathan.Schmutz@drexel.edu (Eric Schmutz).

Preprint submitted to Elsevier 6 July 2006
Group Theory” of Erdős and Turán[3]. Dixon and Panario[2] also estimated the expected value \(E(X) = \text{the average degree} \). Hansen and Schmutz[7] compared random polynomials with the characteristic polynomials of random invertible matrices. Based on this work, it is reasonable to conjecture that a matrix-analogue of the Dixon-Panario theorem should hold.

The number of matrices having a given characteristic polynomial depends, in a complicated way, on the degrees of the irreducible factors that the polynomial has (Reiner[15]). Select a matrix \(A \) uniform randomly from among all \(q^{n^2} \) matrices having entries in the finite field \(\mathbb{F}_q \), and let \(f \) be the characteristic polynomial of \(A \). Hence the characteristic polynomial \(f \) is being selected randomly, but not uniform randomly, from among all monic degree \(n \) polynomials in \(\mathbb{F}_q[x] \). Let \(\mu_n = \text{the average, over all } q^{n^2} \text{ matrices } A, \text{ of the degree of the splitting field of the characteristic polynomial of } A. \) We prove here that

\[
\mu_n = e^{c_0 \sqrt{n / \log n (1+o(1))}}.
\]

where \(c_0 \) is an explicit constant.

The remainder of this section specifies the paper’s symbols and notation. Definitions are listed here in quasi-alphabetical order, and then used later without comment.

- \(c_0 = 2 \sqrt{\int \frac{\log(1+t)}{e^t - 1} \, dt} = 2.990 \ldots \)
- \(c_\infty = \prod_{j=1}^{\infty} (1 - \frac{1}{2^j}) = 0.288 \ldots \)
- \(| \cdot | = \text{degree: if } f \text{ is a polynomial in } \mathbb{F}_q[x], \text{ then } |f| \text{ is its degree.} \)
- \(F(u, r) := \prod_{i=1}^{r} (1 - \frac{1}{u^i}) \text{ for positive integers } u, r, \text{ and } F(u, 0) := 1 \)
- \(g_f = \text{divisor (in } \mathbb{F}_q[x]) \text{ of } f \text{ that is minimal among divisors } g \text{ of } f \text{ for which } X(f) = X(g). \)
- \(G_{n,q} = \{ g_f : f \in \mathcal{P}_{n,q} \}. \)
- \(\mathcal{I}_{n,q} = \text{monic polynomials of degree } n \text{ in } \mathbb{F}_q[x] \)
- \(\mathcal{I} = \bigcup_{n=1}^{\infty} \bigcup_{n,q} \text{monic polynomials in } \mathbb{F}_q[x] \text{ that are irreducible over } \mathbb{F}_q \)
- \(\Lambda_m = \text{partitions of } m \text{ having distinct parts.} \)
- \(\tilde{\Lambda}_m = \text{partitions of } m \text{ (non necessarily distinct parts.)} \)
- \(\mathcal{M}_{n,q} = \text{set of all } n \times n \text{ matrices with entries in the finite field } \mathbb{F}_q. \)
- \(M_{n,q} = \text{probability measure on } \mathcal{P}_{n,q} \text{ defined by } M_{n,q}(\{f\}) = \text{the proportion of matrices in } \mathcal{M}_{n,q} \text{ whose characteristic polynomial is } f. \)
- \(m_\phi(f) = \text{the multiplicity of } \phi \text{ in } f: \text{ for } \phi \in \mathcal{I} \text{ and } f \in \mathbb{F}[x], \phi^{m_\phi(f)} \text{ divides } f \text{ but } \phi^{m_\phi(f)+1} \text{ does not divide } f. \)
- \(\mu_n = \sum_{A \in \mathcal{M}_{n,q}} X(A). \)
- \(\mathcal{P}_{n,q} = \text{set of all } q^n \text{ monic polynomials of degree } n \text{ in } \mathbb{F}_q[x]. \)
- \(P_{n,q} = \text{uniform probability measure on } \mathcal{P}_{n,q}: P_{n,q}(\{f\}) = q^{-n} \)
• $S_{n,q}$ polynomials in $\mathcal{P}_{n,q}$ that factor completely, i.e. have all their roots in \mathbb{F}_q.
• $X(f) = \text{degree of the splitting field of } f$, if $f \in \mathbb{F}_q[x]$.
• $X(A) = X(f)$, if A is a matrix with characteristic polynomial f.
• $X(\lambda) = \text{least common multiple of the parts of } \lambda$, if λ is an integer partition.

The last three definitions overload the symbol X. However this is natural and consistent: the degrees of the irreducible factors of a polynomial $f \in \mathbb{F}_q[x]$ form a partition of $|f|$, and it is well known that the degree of the splitting field of f is the least common multiple of the degrees of its irreducible factors.

2 Comparison of the probability measures

There is an explicit formula for the number of matrices with a given characteristic polynomial:

Theorem 1 (Reiner[15]) If $f = \prod \phi^{m_\phi(f)}$ is a polynomial in $\mathcal{P}_{n,q}$, then

$$M_{n,q}(\{f\}) = \frac{q^nF(q,n)}{\prod_{\phi \in I} F(q^{\phi|}, m_\phi(f))}$$

(See also Crabb[1], Fine-Herstein[5], and Gerstenhaber[9]). In order to apply Theorem 1, we need a simple lemma:

Lemma 1 For all non-negative integers a, b, and all prime powers q,

$$F(q, a + b) \geq F(q, a)F(q, b)$$

Proof. Since $q^{a+j} \geq q^j$ for all j, we have

$$F(q, b) = \prod_{j=1}^{b} (1 - \frac{1}{q^j}) \leq \prod_{j=1}^{b} (1 - \frac{1}{q^{a+j}}).$$

But then

$$F(q, a + b) = F(q, a) \prod_{j=1}^{b} (1 - \frac{1}{q^{a+j}}) \geq F(q, a)F(q, b).$$

In one direction, there is a simple relationship between the probability measures P_n and $M_{n,q}$:
Proposition 1 For all $A \subseteq \mathcal{P}_n$,

$$M_{n,q}(A) \geq c_\infty P_{n,q}(A).$$

Proof. It is obvious from the definition of F that, for all $u > 1$ and all non-negative integers r,

$$0 < F(u,r) \leq 1. \quad (1)$$

If $f \in A$, then by Theorem 1 and (1),

$$M_n(\{f\}) \geq F(q, n) q^{-n} \geq c_\infty q^{-n}.$$

Summing over $f \in A$ we get Proposition 1.

It is interesting to note that the inequality in Proposition 1 has no analogue in the other direction:

Proposition 2 $\limsup_{n \to \infty} \max_{f \in \mathcal{P}_{n,q}} \frac{M_{n,q}(f)}{P_{n,q}(f)} = \infty$

Proof. Consider $f =$ the product of all irreducible polynomials of degree less than or equal to m. In this case $n = n_m = \sum_{d=1}^m d |I_{d,q}|$, and

$$M_{n,q}(\{f\}) = q^{-n} \frac{F(q, n)}{\prod_{k=1}^m (1 - \frac{1}{q^k})^{|I_k|}} \quad (2)$$

Since $F(q, n) \geq c_\infty$, it suffices to prove that $\prod_{k=1}^m (1 - \frac{1}{q^k})^{I_k} = o(1)$ as $m \to \infty$. The following bounds appear on page 238 of Mignotte[10]:

$$q^k \geq I_k = \frac{1}{k} \sum_{d|k} \mu(d)q^{k/d} \geq q^k \left(\frac{1}{k} - \frac{2}{k} q^{k/2} \right) \quad (3)$$

Using first the inequality $\log(1 - x) \leq -x$, and then the inequality on the right side of (3), we get

$$\prod_{k=1}^m (1 - \frac{1}{q^k})^{I_k} \leq \exp \left(-\sum_{k=1}^m \frac{1}{k} + O(1) \right) = O\left(\frac{1}{m} \right)$$

•
3 Non-existence of Jordan forms.

Neumann and Praeger[12] estimated the probability that the characteristic polynomial of a random matrix has none of its roots in \(\mathbb{F}_q \). In this section we estimate the probability that the characteristic polynomial of a random matrix has all of its roots in \(\mathbb{F}_q \).

Theorem 2 For all prime powers \(q \) and all positive integers \(n \),

\[
 c_{\infty} q^{-n} \left(\frac{n + q - 1}{q - 1} \right) \leq M_{n,q} (\mathcal{S}_{n,q}) \leq q^{-n} \left(\frac{n + q - 1}{q - 1} \right)
\]

Proof. Suppose \(f \in \mathbb{F}_q[x] \). Then \(f \in \mathcal{S}_{n,q} \) iff two conditions are satisfied:

1. The multiplicities of the linear factors form composition of \(n \) into non-negative integer parts: \(\sum_{\alpha \in \mathbb{F}_q} m_{x-\alpha}(f) = n \), and
2. \(m_\phi(f) = 0 \) for all \(\phi \in \bigcup_{d \geq 2} I_d \); no irreducible factor has degree larger than one.

It is well known that there are exactly \(\binom{n+q-1}{q-1} \) compositions of \(n \) into \(q \) non-negative parts. It therefore suffices to prove that, for any \(f \in \mathcal{S}_{n,q} \), \(c_{\infty} q^{-n} \leq M_{n,q} (\{f\}) \leq q^{-n} \).

Suppose \(f = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha)^{m_{x-\alpha}(f)} \) and \(\sum_{\alpha \in \mathbb{F}_q} m_{x-\alpha}(f) = n \). By Theorem 1, \(M_{n,q}(\{f\}) = \prod_{\alpha \in \mathbb{F}_q} F(q,m_{x-\alpha}(f)). \) Lemma 1 implies that \(\prod_{\alpha \in \mathbb{F}_q} F(q,m_{x-\alpha}(f)) \geq F(q,n) \). Therefore, \(M_{n,q}(\{f\}) \leq q^{-n} \).

For the other direction, apply Proposition 1 with \(A = \{f\} \).

Corollary 1 For almost every matrix \(A \in M_n(q) \), there is no matrix \(B \in M_n(q) \) such that \(B \) is in Jordan canonical form and is similar to \(A \).

Comment: In Corollary 1, “almost every matrix” means “for all but \(o_q(q^n^2) \) matrices”, where the subscript in the little-o indicates \(q \)-dependence. The bounds in Theorem 2 do hold for all \(n \) and \(q \). But for fixed \(n \), we have \(\binom{n+q-1}{q-1} q^{-n} \rightarrow \frac{1}{n} \) as \(q \rightarrow \infty \). On other hand, for fixed \(q \), \(\binom{n+q-1}{q-1} q^{-n} \) approaches zero exponentially fast as \(n \rightarrow \infty \).
4 Average degree

An easy consequence of Proposition 1 is a lower bound for the average degree:

Lemma 2 $\mu_n \geq c_0 \sqrt{n/\log n} (1 + O(\frac{\log \log n}{\sqrt{\log n}}))$

Proof. By Theorem 1,

$$\mu_n = \sum_{f \in \mathcal{P}_{n,q}} q^{-n} \frac{F(q, n)}{\prod_{\phi} F(q^{|\phi|}, m_\phi(f))} X(f)$$

Again using the inequality (1), we get $\prod_{\phi} F(q^{|\phi|}, m_\phi(f)) \leq 1$ and $F(q, n) \geq c_\infty$.
Therefore $\mu_n \geq c_\infty \sum_{f \in \mathcal{P}_{n,q}} q^{-n} X(f)$. The lower bound then follows directly from the results of Dixon and Panario [2].

The upper bound for μ_n is harder because, as Proposition 2 suggests, we don’t have convenient upper bounds the $M_{n,q}$-probabilities of events. Two lemmas are needed for the proof.

Let $\mathcal{D}(f) = \{ g : g \text{ divides } f \text{ in } \mathbb{F}_q[x] \text{ and } X(g) = X(f) \}$. Then $\mathcal{D}(f)$ is a non-empty finite set that is partially ordered by divisibility. For each f, we can choose a minimal element $g_f \in \mathcal{D}(f)$.

Lemma 3 The irreducible factors of g_f appear with multiplicity one and have different degrees.

Proof. Suppose that, on the contrary, ϕ_1 and ϕ_2 are irreducible polynomials of degree d and that $\phi_1 \phi_2$ divides g_f. Let $g = \frac{g_f}{\phi_1}$. Then $X(g) = X(f)$ and g divides g_f. This contradicts the minimality of g_f.

Lemma 4 If $|g_f| = d$, then $M_{n,q}(\{f\}) \leq 4M_d(\{g_f\})M_{n-d}(\{h_f\})$.

Proof. Since $f = g_fh_f$, we have $m_\phi(f) = m_\phi(g_f) + m_\phi(h_f)$. It therefore follows from Lemma 1 that

$$F(q^{|\phi|}, m_\phi(f)) \geq F(q^{|\phi|}, m_\phi(g_f))F(q^{|\phi|}, m_\phi(h_f)).$$ (4)
Combining (4) with Theorem 1, we get

\[M_{n,q}(\{f\}) = \frac{F(q,n)}{q^m \prod_{\phi} F(q^{\phi}, m_{\phi}(f))} \leq \frac{F(q,n)}{q^m \prod_{\phi} F(q^{\phi}, m_{\phi}(g_f))} \]

\[= \frac{F(q,n)}{F(q,d) F(q,n-d)} \]

\[M_d(\{g_f\}) M_{n-d}(\{h_f\}). \]

Finally, \(\frac{F(q,n)}{F(q,d) F(q,n-d)} \leq \frac{1}{F(q,d)} \leq \frac{1}{c_{\infty}} \leq 4. \)

\[\star \]

Theorem 3 \(\mu_n = \exp \left(c_0 \sqrt{\frac{n}{\log n}} \left(1 + O\left(\frac{\log \log n}{\log n} \right) \right) \right). \)

Proof.

\[\mu_n = E(X) = \sum_{f \in \mathcal{P}_{n,q}} M_{n,q}(f) X(f) \]

\[= \sum_{g \in \mathcal{G}_{n,q}} X(g) \sum_{h} M_{n,q}(\{gh\}), \]

where the inner sum is over all \(h \) for which \(g_{gh} = g \). By Lemma 4, this is less than

\[\sum_{g \in \mathcal{G}_{n,q}} X(g) 4M_{|g|}(\{g\}) \sum_{h} M_{n-|g|,q}(\{h\}) \]

Since the inner sum is less that one, we have

\[\mu_n \leq 4 \sum_{g \in \mathcal{G}_{n,q}} X(g) M_{n,q}(\{g\}). \]

(5)

If \(g \in \mathcal{G}_{n,q} \), then the degrees of the irreducible factors of \(g \) form a partition of \(|g| \) into distinct parts. Grouping together polynomials that have the same partition, we see that the right side of (5) is less than or equal to

\[4 \sum_{m=1}^{n} \sum_{\lambda \in \Lambda_m} LCM(\lambda_1, \lambda_2, \ldots) q^{-m} \prod_{i} \frac{|I_{\lambda_i}|}{1 - \frac{1}{q^{\lambda_i}}}. \]

(6)

If \(\lambda \) has distinct parts \(\lambda_1, \lambda_2, \ldots \), then \(\prod_{i} (1 - \frac{1}{q^{\lambda_i}}) \geq \prod_{i=1}^{m} (1 - \frac{1}{q}) \geq c_{\infty} \). It is well known that \(|I_{\lambda_i}| \leq \frac{2^\lambda_i}{\lambda_i} \). Putting these two estimates back into the right side of (6), we get

\[\mu_n \leq 4 \frac{\sum_{m=1}^{n} \sum_{\lambda \in \Lambda_m} LCM(\lambda_1, \lambda_2, \ldots)}{\lambda_1 \lambda_2 \ldots} \leq 4 \frac{\sum_{m=1}^{n} \sum_{\lambda \in \Lambda_m} LCM(\lambda_1, \lambda_2, \ldots)}{\lambda_1 \lambda_2 \ldots} \]

(7)
This last quantity has appeared previously in the study of random permutations ([4],[8],[16]) where it was approximated by coefficient of x^n in the generating function
\[\frac{1}{1-x} \prod_{\text{primes } p}^{\infty} (1 + x^p + \frac{x^{2p}}{2} + \frac{x^{3p}}{3} + \cdots). \]

The conclusion was that the right side of (7) is
\[\exp \left(c_0 \sqrt{\frac{n}{\log n}} \left(1 + O(\frac{\log \log n}{\sqrt{\log n}}) \right) \right). \]

References

