Induction and Recurrence

1 Mathematical induction

The principle of mathematical induction states that if an assertion P, is true for an integer
n = ng (the base case) and if P, ; is true as soon as P, is true (the inductive step), then the
assertion P, is true for all integers n > ny. Equivalently, if an assertion P, is true for an
integer n = ng and if Py, is true as soon as Py, Pn—1,. .., Pn, are true, then the assertion P,
is true for all integers n > ng. To see how the first version implies the second one, apply it to
P}, := (Pp, and Ppy41 and ... and Py,). It is advisable to systematically work with the second
version. Sometimes, several base cases may need to be verified (see Section 2, for instance).

The validity of the principle of mathematical induction is a consequence of the well-ordering
principle: any nonempty set of nonnegative integers has a minimal element. Indeed, consider
the set § := {n > ny : P, is wrong}. If S was nonempty, it would have a minimal element
n1, and necessarily n; > ng (by the base case). The minimality implies that n; — 1 ¢ S, i.e.,
Pn,—1 is true. But then P, is also true (by the inductive step), meaning that n; ¢ S. Thisis a
contradiction. Hence S is empty, or in other words P, is true for all n > no.

2 Recurrence relation

Mathematical induction is often used to establish rigorously a statement guessed from the
first few cases (or given by the question). For instance, consider a sequence (u,),>1 given by
the values u1,uy, ..., u, and the p-term recurrence relation uyip = f(Untp—1,---,Un+1, un) for
n > 1. One can compute in turn u,1, next up,g, then upy, 3, etc. If we see a pattern emerging
for a closed-form formula, we can justify it using mathematical induction. We have already
seen arithmetic and geometric progressions as examples of sequences defined by one-term
recurrence relations. We now consider the particular case of a linear function f, i.e.,

Uptp = Cp—1Untp—1 + *** + CLUpt1 + Colin, co # 0.

If the polynomial p(z) := 2# — cp_lzf"‘1 — ... —c12 — ¢g has distinct roots r1, 7o, ..., 7, (the case
of repeated roots can be treated, too), then it is proved below that the general term is given by

1) Up = ouT] +oory + -+ aprg for alln > 1,

where the p coefficients a1, oo, . . ., oy are uniquely determined by the p values of uy, us, . . ., up.
We proceed by induction on n. The p base cases hold since a1, as, ..., oy are determined pre-
cisely for this purpose. Assuming that (1) holds up to n > 1, let us now prove that it also holds
for n + 1. Using the recurrence relation, the induction hypothesis forn—1,n—2,...,n—p+1,




and the fact that 7";-’ = cp_lr;’_l + -+ +cirj +co for all j € [1: p|, we derive
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This shows that (1) holds for n + 1. The principle of mathematical induction allows us to
conclude that (1) holds for all n > 1.

3 An application: Jensen’s inequality

A function ¢ defined on an interval I is called convex if

e((1-t)z+tz') < (1 —t)p(z) +tp(z’)  forallz,2’ € Iand all t € [0, 1].
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Given a convex function ¢ on an interval I, Jensen’s inequality says that the image of a convex
combination is smaller than or equal to the convex combination of the images. Precisely, if
Z1,...,2n € I and if ¢1,...,t, > O satisfy t; + --- + £,, then

(2) w(thxj) < thgo(mj). i
J=1 Jj=1

This can be proved by induction on n. Indeed, in the base case n = 1, (2) holds with equality.
Let us now assume that (2) holds up to an integer n—1, n > 2, and let us prove that it also holds
for the integer n. To this end, consider z1,...,z, € T and ¢y,...,t, > Owitht; +---+t, = 1. If
t, = 1, then all other ¢; are zero, and (2) holds with equality. So we may assume that ¢, < 1,
and we set t; :=t;/(1 — tn) 2 0for j € [1 : n — 1]. Notice that >~ 11t3 (i1 t)/ (1 —ts) = L.
Applying the defining property of a convex function and then the induction hypothesis, we get

n n—1 n—1
<p( thmj) = go( E tjz; + tnmn) = cp((l —tn) Z t;-ﬂcj + tnmn>
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n—1 n—1
<(1- tn)go(th-a:j) + tno(zn) < (1 —ty) thw (z5) + tnep(zn) thcp ;).
j=1 ji=1

This shows that (2) holds for n. The principle of mathematical induction allows us to conclude
that (1) holds for all n > 1.



4 Exercises

Ex.1:

Ex.2:
Ex.3:
Ex.4:

Ex.5:

Ex.6:

Ex.7:

Ex.8:

Ex.9:

Ex.10:

Ex.11:

Ex.12:

Prove that, for any integer n > 1,

~ 12— n(n+1)(2n + 1)'
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For n > 1, prove that n(n — 1)(n + 1)(3n + 2) is divisible by 24.
Find the number R(n) of regions in which the plane can be divided by n straight lines.

The Fibonacci sequence is defined by Fy = 0, Fy = 1, and F, 1 = F, + Fy_1 forn > 1.
Find a closed-form formula for F), involving the golden ration ¢ := (1 + v/5)/2.

Guess a formula for the sum 1% 4+ 2 + ... 4 n?%, and then provide a rigorous proof (Hint:
the answer is a polynomial in n, it has degree 5, and it is divisible by n(n + 1)(2n + 1)).

Given r € R, consider the two-term recurrence relation u,19 = 2ru, 1 — r?u, (note that
the polynomial p(z) = 22 — 2rz + r2 has a double root at ). Prove that u, = or™ + fnr"
for all n > 1, where the coefficients o, 8 are uniquely determined by the values of u1, u,.

Find a formula for the general term of the sequence defined by u; = 3 and the recurrence
relation up41 = up(u, + 2) forn > 1.

For n > 2, prove that any 2n points joined by at least n2 + 1 segments contain at least
one triangle. Show that this is not true if the number of segments is n?.

For integers n,d > 0, prove the relation

O+ () (1) (59- (1),

Consider a 2™ x 2" checkerboard from which an arbitrary square has been removed.
Can it be paved with polyominos, that is L-shaped tiles covering three squares each?

In Section 2, we have used the fact that if r1,...,r, are distinct nonzero numbers, then
the system of p linear equations ofr} + - -- + apTy = U, n € [1: p], in the p unknowns
a1,...,0p has a unique solution. In linear algebra terms, this condition is equivalent to
the invertibility of the matrix whose (7, j)th entry is r; Establish this invertibility by

proving the formula for the Vandermonde determinant, i.e.,
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Given a convex function ¢ on an interval I and given zo € I, prove that the slope
x €I (f(x)— f(z0))/(z — zo) is an increasing function of z € I.



