1. (a) Write a MATLAB function implementing a predictor-corrector algorithm based on a three-step Adams-Bashforth and a two-step Adams-Moulton methods:

\[w_{n+1}^{(0)} = w_n + \frac{h}{12} \left\{ 23f(t_n, w_n) - 16f(t_{n-1}, w_{n-1}) + 5f(t_{n-2}, w_{n-2}) \right\}, \]

\[w_{n+1}^{(1)} = w_n + \frac{h}{12} \left\{ 5f(t_{n+1}, w_{n+1}) + 8f(t_n, w_n) - f(t_{n-1}, w_{n-1}) \right\}, \]

(b) Use (a) to solve numerically the following initial-value problem:

\[y' = \frac{1}{1+t^2} - 2y^2, \quad y(0) = 0, \quad t \in [0,10], \]

which has the exact solution \(y(t) = \frac{t}{1+t^2} \).

(c) On the same plot, present the exact and approximate solutions obtained using steps: \(h = 0.2, \ h = 0.1, \) and \(h = 0.05 \).

(d) For \(t = 10 \), plot the error between the exact and approximate solutions as a function of \(h, E(h) \). Verify that \(E(h) = O(h^3) \).

2. Consider the initial-value problem

\[y' = 3t^2y, \quad y(0) = 1. \]

The exact solutions of (1) is \(y(t) = \exp(t^3) \).

(a) Write a MATLAB code to solve (1) on \([0,10]\), using Heun’s method with the following step sizes: \(h = 0.1 \) and \(2h \). Denote the corresponding approximate solutions by \(w_h \) and \(w_{2h} \) respectively.

(b) Use Richardson’s extrapolation to improve the accuracy of \(w_h \). Denote this solution by \(\tilde{w}_h \).

(c) On the same figure, plot the graphs of \(y, w_h, w_{2h} \), and \(\tilde{w}_h \).

(d) On another figure, plot the errors of approximate solutions: \(e_h = y - w_h, \ e_{2h} = y - w_{2h}, \)

\(\tilde{e}_h = y - \tilde{w}_h \) (use different colors). What is the most accurate solution?