1. **Section 5.1**: initial value problem, Lipschitz condition, well-posed problem, sufficient conditions for well-posedness of an initial value problem

 Problems: 2, 4, 8

2. **Section 5.2**: difference equation, Taylor formula for a real-valued function of one variable, Euler method

 Problems: 1

3. **Section 5.3**: Taylor formula for a real-valued function of two variables, Taylor methods of order 2 and 3, local truncation error

 Problems: 1

4. **Section 5.4**: Modified Euler method and Midpoint method

 Problems: 1, 9

5. **Section 5.5**: tolerance, error control algorithm

6. **Section 5.6**: definition of an m-step method, a two- and three-step Adams-Bashforth methods

 Problems: 11b

7. **Section 3.2**: divided-differences, forward and backward Newton's interpolating polynomials

 Problems: 4, 5

8. **Section 5.10**: stability of a numerical method

 Problems: TBA

For all numerical methods listed above, you need to know how to derive a finite-difference scheme and how to estimate a local truncation error.