A PRECONDITIONING METHOD FOR THIN HIGH CONTRAST
SCATTERING STRUCTURES
JOSEF A. SIFUENTES§ AND SHARI MOSKOW†

27 February 2017

We present a method to precondition the discretized Lippmann-Schwinger integ-
etral equations which model time-harmonic scalar waves in the presence of a thin
inhomogeneous scatterer of high contrast. The preconditioner is based on asymptotic
results as the thickness of the third component direction goes to zero and requires
solving a two dimensional limiting formulation of the problem at the preconditioning
step.

Key words. preconditioner, Helmholtz equation, integral methods, acoustic scattering

AMS subject classifications. 65F08, 65F10, 15A01, 47A10, 47A55

1. Introduction. We consider the problem of scattering of time-harmonic scalar
waves through a thin structure of high contrast in three dimensions. Such a model
arises in the study of photonic band gap structures. Photonic band gap materials are
designed to guide the propagation of light by blocking certain wavelengths (the band
gap), while allowing others to pass freely through, facilitating information propagation
in optical communication networks and in optical computing. We consider here three
dimensional slab waveguides with a two dimensional photonic crystal structure. Slab
materials are typically constructed with a high refraction index and are embedded in
a homogeneous scattering medium, typically air. See [22], [23], [9] for more on thin
photonic band gap structures.

We assume here that the wave phenomenon is modeled by the Helmholtz equation,
keeping in mind that the full Maxwell equations are needed for three dimensional
photonic. We solve the Helmholtz equation by discretizing its equivalent Lippmann-
Schwinger volume integral equation formulation [8]. The resulting finite dimensional
linear system is large, dense, and non-Hermitian. While there are efficient matrix-
vector product routines that make an iterative solver an appealing approach [4, 6,
11, 10, 17, 18], spectral properties of the system often cause Krylov subspace based
iterative methods to converge slowly.

In [16] the authors proposed an asymptotic expansion of the Lippmann-Schwinger
integral equation for inhomogeneities that are simultaneously high contrast and thin
in one component direction. They showed that the the solution to a two dimensional
effective model and the full three dimensional problem differed by $O(h)$ as $h \to
0$, where h is the width of the inhomogeneity in the thin component direction. A
natural extension of their work is to precondition the three dimensional problem
using the two dimensional operator. We formulate the preconditioner so that it can
be applied to three dimensional data and yet be solved with the complexity of a two
dimensional problem. We describe how to do this in section 2. We then apply the
asymptotic results from [16] to obtain bounds on the GMRES residual applied to

§School of Mathematical and Statistical Sciences, University of Texas - Rio Grande Valley, 1201
West University Dr, Edinburg, TX 78539-2999 (josef.sifuentes@utrgv.edu).
†Department of Mathematics, Drexel University, Korman Center 33rd and Market St., Philadelphia, PA 19104 (moskow@math.drexel.edu). The research of Moskow was partially supported by NSF grant DMS-1411721.

This manuscript is for review purposes only.
the preconditioned system in section 3. We discuss the numerical implementation in section 4, and finally in section 5, we demonstrate its effectiveness with numerical examples.

1.1. Problem Formulation.

We consider a (potentially inhomogeneous) scatterer \(S \in \mathbb{R}^3 \), thin in the third component direction, and set in a homogeneous host medium such as air or some fluid. The total scattered field \(u \) is satisfies the Helmholtz equation

\[
\Delta u + \kappa^2 \epsilon(s) u = 0 \quad \text{for all } s \in \mathbb{R}^3
\]

where the parameter \(\kappa \) is called the wave number and defined to be \(\kappa = \omega/c_0 \) for temporal frequency \(\omega \) with \(c_0 \) denoting the speed of wave propagation in the host medium. The total scattered field \(u = u^i + u^s \) is the sum of a given incident wave \(u^i \) and a scattered wave \(u^s \). We require the scattered wave to satisfy the Sommerfeld radiation condition, which implies there is no wave reflection at infinity [8]:

\[
\frac{\partial u^s}{\partial r} - i \kappa u^s = o(1/r), \quad r = ||s||.
\]

The incident wave \(u^i \) satisfies the freespace Helmholtz equation, \(\Delta u^i + \kappa^2 u^i = 0 \) for all of \(\mathbb{R}^3 \).

We are most interested in two dimensionally periodic photonic crystal structures in a three dimensional scattering thin slab, so the refractive index is assumed to be constant in the thin component direction. As in [16], we assume the scatterer is of the form

\[
S = \Omega \times [-h/2, h/2]
\]

and let \(s = (x, z) \) for \(x \in \Omega \), \(\Omega \) a bounded domain in \(\mathbb{R}^2 \) and \(z \in [-h/2, h/2] \). We model the high contrast of the squared refractive index as \(\epsilon_0(x)/h \), where \(h \) is the length of the thin side, an appropriate regime for thin slab photonic band gap structures, where \(\epsilon_0(x) \) models the inhomogeneous two dimensionally periodic structure. Thus we define the squared refractive index function

\[
\epsilon(x, z) = \begin{cases}
1 & \text{for } (x, z) \notin S; \\
\frac{\epsilon_0(x)}{h} & \text{for } (x, z) \in S,
\end{cases}
\]

so that \(\epsilon - 1 \) is compactly supported on the scatterer \(S \). If \(u = u^s + u^i \) satisfies equations (1) and (2), then \(u \) is also a solution to the Lippmann-Schwinger volume integral equation [8]

\[
u(s) + \kappa^2 \int_S \left(1 - \frac{\epsilon_0(s')}{h} \right) G(s, s') u(s') \, ds' = u^i(s),
\]

where \(G(s) \) is the free space Green’s function given by

\[
G(s, s') = \frac{e^{i \kappa ||s-s'||}}{4\pi ||s-s'||}.
\]

Using that the scatterer \(S = \Omega \times [-h/2, h/2] \) and letting \(s = (x, z) \) for \(x \in \Omega \) and \(z \in [-h/2, h/2] \), we rewrite the Lippmann-Schwinger equation (4) as

\[
u(x, z) + \kappa^2 \int_{-h/2}^{h/2} \left(1 - \frac{\epsilon_0(x')}{h} \right) G((x, z), (x', z')) u(x', z') \, dz' \, dx' = u^i(x, z),
\]

This manuscript is for review purposes only.
and apply the linear change of variable \(z = h \zeta \) to obtain
\[
 u(x, \zeta) + \kappa^2 \int_{-1/2}^{1/2} (h - \epsilon_o(x')) G((x, h \zeta), (x', h \zeta')) u(x', \zeta') \, d\zeta' = u^i(x, h \zeta).
\]

We write this compactly as
\[
 (I + K)u(x, \zeta) = u^i(x, h \zeta),
\]
where
\[
 (Ku)(x, \zeta) := \kappa^2 \int_{-1/2}^{1/2} (h - \epsilon_o(x')) G((x, h \zeta), (x', h \zeta')) u(x', \zeta') \, d\zeta' d\zeta'.
\]

We define our rescaled domain \(\tilde{S} = \Omega \times [-1/2, 1/2] \), and note that the above \(K : L^\infty(\tilde{S}) \to L^\infty(\tilde{S}) \) is compact.

2. Application of the GMRES iterative method. Consider applying the GMRES iterative method \([19]\) to the continuous equation (6). Since the operator we are interested in is of the form \(A := I + K \), where \(K \) is compact, \(A \) is bounded and has only a finite spectrum outside any neighborhood of one \([14, \text{ pg. 421}]\). Thus, unlike discretizations of the Helmholtz equation (1), refining the discretizations of the Lippmann-Schwinger equation has little effect on the conditioning of the resulting linear system and therefore little effect on GMRES performance \([13], [12]\). Numerical experiments in \([20]\) show that increased mesh resolution only adds high frequency eigenmodes to the spectrum, corresponding to eigenvalues of \(A \) close to one. Thus we should expect that convergence analysis of the continuous case gives insight to convergence behavior of the discretized problem, see e.g. \([5, 15, 21, 24]\).

The continuous GMRES problem is the iterative minimization problem that solves at iteration \(m \):
\[
 \|r_m\| = \min_{u \in \mathcal{K}_m(A, u^i)} \|u^i - Au\|,
\]
where \(\mathcal{K}_m(A, u^i) := \text{span}\{u^i, Au^i, A^2u^i, \cdots, A^{m-1}u^i\} \) is the Krylov subspace and \(\| \cdot \| \) is an appropriate operator norm. In our paper, and following the results in \([16]\), we will use the \(L^\infty(X) \) vector norm and the operator norm it induces, where \(X \) is a compact set in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) depending on context. Since the GMRES solution to the iterative minimization problem is the product of a linear combination of monomials of \(A \) and \(u^i \), we can write the minimizer \(u_m \) as a product of a polynomial evaluated at \(\tilde{A} \) of degree \(m \) and the incident wave \(u^i \). Thus we can write the residual
\[
 r_m = u^i - Au_m
\]
as the product of a polynomial evaluated at \(\tilde{A} \) of degree \(m \) times \(u^i \), and the polynomial is equal to 1 at the origin. Then equation 8 is equivalent to
\[
 \|r_m\| = \min_{p_m \in \mathcal{P}_m} \|p_m(A)u^i\|,
\]
where \(\mathcal{P}_m \) is the set of all polynomials of degree \(m \) or less which are equal to 1 when evaluated at the origin.

In practice, when the GMRES method is applied to the discretized linear system, an orthogonal basis for the approximating space is generated by the Arnoldi iteration \([19]\), therefore the cost per iteration and memory requirements grows with each iteration as one must store the basis for the growing Krylov subspace. Thus GMRES
is feasible if the number of iterations remain small, but may be too computationally
expensive without effective preconditioning.

Now we apply the asymptotic results of [16] to build an effective preconditioning
scheme. That is, rather than apply GMRES to equation (6), we solve the equivalent
problem
\[(AA_0^{-1}) (A_0 u) = u',\]
where a substantially lower order polynomial in \(P_m^0\) is necessary to achieve small
residual when evaluated at \(AA_0^{-1}\), and one can solve \(A_0 y = z\) relatively quickly for
an arbitrary function \(z \in C(\tilde{S})\) (here \(A_0\) will be from a two dimensional problem). In
this case, the right hand side data need not have physical meaning; in fact it is a basis
vector of the Krylov subspace of the current GMRES iteration. We point out that
the regime for which preconditioning is necessary is when \(\kappa^2 (h - \epsilon_0)\) is of sufficient
magnitude that the compact integral operator \(K\) defined in (7) is not less than one in
magnitude. Since the operator \(A\) is a compact (and thus bounded) perturbation to
the identity, if the compact perturbation is relatively small, then GMRES is expected
to converge quickly without preconditioning.

To build our preconditioning operator \(A_0\), consider the two dimensional integral
equation
\[(I - K_{2D}) u_0(x) = u^i(x, 0)\]
where
\[(K_{2D} u_0)(x) := \kappa^2 \int_{\Omega} \epsilon_a(x') G((x, 0), (x', 0)) u_0(x') \, dx'.\]
This is the negative of the two dimensional limiting operator for (7). Note, however,
that in order to use (8) as a preconditioner, we must extend its domain to include
functions on \(\mathcal{S} = \Omega \times [-1/2, 1/2]\). Thus we define \(K_0 : C(\mathcal{S}) \to C(\mathcal{S})\) by
\[(K_0 u)(x, \eta) = K_{2D} \left(\int_{-1/2}^{1/2} u(x, \eta) \, d\eta \right)\]
Note that the domain of \(K_0\) contains continuous functions on the three dimen-
sional compact set \(\mathcal{S}\), but its image contains only functions that are constant in the \(z\)
direction. Then the preconditioning operator is defined to be \(A_0 := I - K_0\). Lemma
2 of [16] shows that \(A_0\) is continuously invertible on both \(L^2(\mathcal{S})\) and \(C(\mathcal{S})\).

2.1. The preconditioning step. As mentioned before, the right hand side data
for the preconditioning operator \(A_0\) has no physical interpretation, nor is it necessarily
constant in the direction of the third component. Furthermore, for such a system
\((A_0 y)(s) = z(s)\), the solution \(y(s)\) need not be constant in the third component
direction. However, this preconditioner is only useful if we can solve it as a two
dimensional problem, which of course will have much lower computational cost than
the original three dimensional problem.

This issue is quite easily dealt with; note that if \((A_0 y)(s) = z(s)\), then
\[(K_0 y)(s) = y(s) - z(s).\]
This implies that \(y(s) - z(s)\) is constant in the \(z\) direction, and therefore equal to its
\(z\) average \(\int_{-1/2}^{1/2} y(x, \zeta) \, d\zeta\). This gives us the equation
\[\kappa^2 \int_{\Omega} \int_{-1/2}^{1/2} \epsilon(x') G((x, 0), (x', 0)) y(x', \zeta') \, d\zeta' \, dx' = \int_{-1/2}^{1/2} y(x, \zeta') - z(x, \zeta') \, d\zeta',\]
which can be rearranged to be

\[
\int_{-1/2}^{1/2} y(x, \zeta') \, d\zeta' - \kappa^2 \int_{\Omega} \epsilon(x') G((x, 0), (x', 0)) \left(\int_{-1/2}^{1/2} y(x', \zeta') \, d\zeta' \right) \, dx' = \int_{-1/2}^{1/2} z(x, \zeta') \, d\zeta'
\]

Define

\[
y_a(x) = \int_{-1/2}^{1/2} y(x, \zeta') \, d\zeta'
\]

and

\[
z_a(x) = \int_{-1/2}^{1/2} z(x, \zeta') \, d\zeta'.
\]

Then the preconditioning step is equivalent to solving the two dimension integral equation

\[
y_a(x) - \kappa^2 \int_{\Omega} \epsilon(x') G((x, 0), (x', 0)) y_a(x') \, dx' = z_a(x).
\]

Given our solution \(y_a(x) \) to the above, we obtain our desired solution by setting

\[
y(x, \zeta) = \kappa^2 \int_{\Omega} \epsilon(x') G((x, 0), (x', 0)) y_a(x') \, dx' + z(x, \zeta) = y_a(x) - z_a(x) + z(x, \zeta).
\]

That is, the \(z \) direction variations in the right hand side are simply added back into the two dimensional solutions.

3. Asymptotic Results. We present here the main result from [16] and extend it to obtain GMRES convergence bounds when applied to equations (8) and (9).

Theorem 1. There exists a constant \(C \), independent of the scattering obstacle thickness \(h \), such that

\[
\sup_{(x, \zeta) \in \bar{S}} \int_{\Omega} |G((x, 0), (x', 0)) - G((x, h\zeta), (x', h\zeta'))| \, dx' < Ch
\]

Proof. See [16, Lemma 1]

It’s follows from Lemma 1 of [16], that the constant \(C = \kappa M + 1 \), and \(M = \sup_{x \in \Omega} \int_{\Omega} \|x-x'\|^{-1} \, dx' \). We can bound \(M \leq \pi d \), where \(d = \text{diam}(\Omega) \). This will prove to be useful in computing convergence estimates for the preconditioned scattering problem.

Corollary 2. Let \(A = I + K \), where the operator \(K \) is defined in (7) and \(A_0 = I - K_0 \), where \(K_0 \) is defined in (10). There exists a constant \(C' \), independent of \(h \), but depending on \(\kappa \) such that

\[
\| I - A A_0^{-1} \|_{L^\infty(\bar{S})} < C' h
\]

Proof.

\[
\| I - A A_0^{-1} \| = \| (A_0 - A) A_0^{-1} \| \leq \| A_0^{-1} \| \| A_0 - A \|
\]
Note that \(\|A_0^{-1}\|\) is independent of \(h\). Consider then the asymptotic term \(\|A_0 - A\|\).

\[
\|A - A_0\| = \sup_{\|u\| = 1} \|A_0 u - Au\| = \sup_{\|u\| = 1} \|K_0 u + Ku\|
\]

which can be bounded to obtain

\[
\|A - A_0\| \leq \sup_{\|u\|=1} \sup_{(x,\zeta) \in \bar{S}} \left(h^2 \int_{-1/2}^{1/2} \int_{\Omega} |G((x,0),(x',0))| |u(s')| ds' \\
+ h^2 \int_{-1/2}^{1/2} \int_{\Omega} \left| G((x,0),(x',0)) - G((x,h\zeta),(x',h\zeta')) \right| |u(x',\zeta')| d\zeta' dx' \\
+ \kappa^2 \int_{-1/2}^{1/2} \int_{\Omega} \left| e_0(x') \left| G((x,0),(x',0)) - G((x,h\zeta),(x',h\zeta')) \right| |u(x',\zeta')| d\zeta' dx' \right)
\]

\[
\leq h^2 \left(\frac{M}{4\pi} + C h + C \|e_0\|_{L^\infty(\Omega)} \right).
\]

Therefore, \(\|I - AA_0^{-1}\|\) is small if the scattering medium is sufficiently thin. Note that this bound depends on the constant \(\|A_0^{-1}\|\), which, while independent of \(h\), could possibly be very large. However, in practice we see that \(\|I - AA_0^{-1}\|\) is much smaller than the bounds above, where \(A\), and \(A_0\) are discretizations of \(A\) and \(A_0\) respectively. The discretized operators are obtained by using a collocation method, which we describe in section 4. We plot the computed values of \(\|I - AA_0^{-1}\|\) in Figure 1.

![Figure 1](image-url)

Fig. 1. \(\|I - AA_0^{-1}\|\) for \(e_0 = 3\) on left, \(e_0 = 9\) on right.

The reason the results are better than the above estimate is that by factoring out the inverse of the preconditioning operator \(A_0\), we didn’t take into account spectral deflating. We show in Corollary 3 that \(\sigma(A) \in \sigma_s(A_0)\), for \(\epsilon = O(h)\). Thus, the spectrum of \(A_0\) approximates the spectrum of \(A\). The numerical results in Figure 1 suggest that we not only approximate well the eigenvalues, but also those eigenmodes with low enough frequency that they have small dependence on the thin direction component (of course the eigenfunctions of \(A_0\) are constant in the thin direction). Indeed we demonstrate that \(\sigma(AA_0^{-1}) \to 1\) as \(h \to 0\) in Figure 2.
Corollary 3. Let $A = I + K$, where the operator K is defined in (7) and $A_0 = I - K_0$, where K_0 is defined in (10), then $\sigma(A) \in \sigma_\epsilon(A_0)$, where $\epsilon = O(h)$.

Proof. Let (λ, v_0) be an eigenpair of A_0, such that $\|v_0\|_{L^\infty(\Omega)} = 1$. Then

$$
\| (\lambda - A)v_0 \|_{L^\infty(\tilde{S})} = \sup_{(x, \zeta) \in \tilde{S}} \kappa^2 h \int_{\tilde{S}} G((x, h\zeta), (x', h\zeta')) v_0(x') d\zeta' dx' + \kappa^2 \int_{\Omega} \int_{-1/2}^{1/2} \epsilon_0(x') (G((x, 0), (x', 0)) - G((x, h\zeta), (x', h\zeta'))) v_0(x') d\zeta' dx' \\
\leq h \sup_{(x, \zeta) \in \tilde{S}} \kappa^2 \int_{\tilde{S}} G((x, h\zeta), (x', h\zeta')) v_0(x') d\zeta' dx' + \sup_{(x, \zeta) \in \tilde{S}} \kappa^2 \int_{\Omega} |\epsilon_0(x')| |v_0(x')| \int_{-1/2}^{1/2} |G((x, 0), (x', 0)) - G((x, h\zeta), (x', h\zeta'))| d\zeta' dx' \\
\leq h\|K(\epsilon_0 = 1)\|_{L^\infty(\tilde{S})} + Ch\|\epsilon_0\|_{L^\infty(\Omega)},
$$

where C is the constant from theorem 1.

![Fig. 2. The spectrum $\sigma(AA_0^{-1})$ for values of $h = 10^{-1}, 10^{-1.2}, 10^{-1.4}, 10^{-1.6}$ going left to right, top to bottom.](image)

Now we can develop a bound for the preconditioned GMRES scheme.

Corollary 4. Let $A = I + K$, where the operator K is defined in (7) and $A_0 = I - K_0$, where K_0 is defined in (10). Then the relative residual of the GMRES
problem applied to the right preconditioned problem

\[(AA_0^{-1})(A_0u) = u^i,\]

is bounded by \(e^m\) at each iteration \(m\), where \(\epsilon = O(h)\).

Proof. Recall that we can bound the GMRES residual by the minimum of all polynomials in \(P_m^0\) evaluated at \(AA_0^{-1}\),

\[\|r_m\| \leq \min_{p_m \in P_m^0} \|p_m(A)u^i\|.
\]

In particular we can take \(p_m(x) = (1 - x)^m\), and use Corollary 2 to obtain

\[\frac{\|r_m\|}{\|u^i\|} \leq \|\epsilon(AA_0^{-1})^m\| \leq \|\epsilon(AA_0^{-1})^m\| \leq \epsilon^m
\]

where \(\epsilon = O(h)\).

4. Numerical Implementation. Recall that we denote the rescaled slab by
\(\tilde{S} := \Omega \times [-1/2, 1/2]\). For a function \(f\) defined on \(S = \Omega \times [-h/2, h/2]\) on \(S\), we denote by \(\tilde{f} : \tilde{S} \to \mathbb{C}\) the scaled function \(\tilde{f}(s) := f((x, \zeta)) := f((x, h\zeta))\) for \(s \equiv (x, \zeta) \in \tilde{S}\).

That is,

\[\tilde{G}(s, s') := \tilde{G}((x, \zeta), (x, \zeta')) := G((x, h\zeta), (x, h\zeta'))\]

\[\tilde{u}^i(s) := \tilde{u}^i((x, \zeta)) := u^i((x, h\zeta)).\]

We use \(f_0 : \tilde{S} \to \mathbb{C}\) to denote functions that are constant in the \(z\) direction, that is, if \(f : S \to \mathbb{C}\), then \(f_0(s) := f(x, 0)\). That is,

\[G_0(s, s') := G((x, 0), (x', 0))\]

\[u_0^i(s) := u^i((x, 0)).\]

We discretize our shifted compact operators \(A = I + K\), and \(A_0 = I - K_0\) using a collocation method. That is, we restrict our solution space for (6) to a finite dimensional subspace, and enforce equality at a finite set of collocation points. To this end, let \(\{\phi_i\}_{i=1}^N\) be a set of linear independent functions corresponding to a discretization of our rescaled scattering obstacle \(\tilde{S}\) into the volumes \(\{d_i\}_{i=1}^N\) where the points \(\{s_i\}_{i=1}^N = \{(x, \zeta_i)\}_{i=1}^N\) are midpoints of the discretization volumes.

Here we use piecewise constant basis functions \(\phi_j\) (\(\phi_j(x) = 1\) if \(x \in d_j\), and zero otherwise) and solve for \(\tilde{u} \in \text{span}\{\phi_i\}_{i=1}^N\) by requiring equality at the collocation points \(s_i\) for \(i = 1, \cdots , N\). This gives the linear system

\[(I - K)u = u^i\]

where

\[K_{ij} = \kappa^2 \int_{d_j} (h - \epsilon(s')) \tilde{G}(s_i, s') \, ds'\]

\[u_i^j = \tilde{u}^i(s_i)\]

We evaluate each entry \(K_{ij}\) using a Clenshaw-Curtis quadrature scheme [7].
4.1. Solving the preconditioned system. Applying the same collocation method to the preconditioner operator $A_0 = I - K_0$, we get a preconditioning matrix

$$I - K_0$$

where

$$(K_0)_{ij} = \kappa^2 \int_{d_j} \epsilon(s') G_0(s_i, s') ds'$$

Note that the integral defining $(K_0)_{ij}$ integrates over the Ω and z direction, however the integrand is constant in the z direction. Therefore the matrix will have the tiled structure

$$K_0 = d_z \begin{bmatrix} K_{2D} & K_{2D} & \cdots & K_{2D} \\ \vdots & \ddots & \ddots & \vdots \\ K_{2D} & K_{2D} & \cdots & K_{2D} \end{bmatrix},$$

(12)

where K_{2D} corresponds to the discretization of the integral operator

$$(K_{2D} u)(x) = \kappa^2 \int_{\Omega} \epsilon_0(x') G_0(x, x') u(x') dx',$$

and d_z is the height of the discretization volumes. Thus

$$(K_{2D})_{ij} = \kappa^2 \int_{\omega_j} \epsilon_0(x') G((x_i, 0), (x', 0)) dx',$$

where $\{\omega_j\}_{j=1}^n$ is a discretization of Ω corresponding to the discretization of $\Omega \times [-1/2, 1/2]$ into $\{d_j\}_{j=1}^n$. The entries of K_{2D} are approximated using Clenshaw Curtis quadrature.

As an analog to the continuous case, we take advantage of the tiled structure of K_0 to reduce the complexity. The preconditioning step involves solving, for arbitrary data z

$$y_k - \frac{1}{m} K_{2D} \sum_{i=1}^{m} y_i = z_k \quad \text{for } k = 1, \ldots, m$$

where m is the number of discretizations in the z direction. Note that for our regular discretization, $d_z = 1/m$. Then, as a discrete analog of averaging in the z direction, we rewrite the above set of matrix equations to get

$$\frac{1}{m} \sum_{k=1}^{m} y_k - \frac{1}{m} K_{2D} \sum_{i=1}^{m} y_i = \frac{1}{m} \sum_{k=1}^{m} z_k.$$

Let

$$y_a = \frac{1}{m} \sum_{k=1}^{m} y_k,$$

and

$$z_a = \frac{1}{m} \sum_{k=1}^{m} z_k.$$
This yields the matrix equation on the individual blocks
\[(I - K_{2D})y_a = z_a,\]
from which we then reconstruct each \(y_k\) from the solution to this system by
\[y_k = z_k + K_{2D}u_a = z_k - z_a + y_a\]
This implies that \(A_0^{-1} = (1/m)E \otimes (A_{2D}^{-1} - I) + I\), where \(A_{2D} = I - K_{2D}\), \(E\) is the \(m \times m\) matrix of all ones, and \(\otimes\) is the Kronecker product.

5. Numerical Results. To demonstrate the effectiveness of the preconditioning scheme presented in the previous section, here we present the results of several numerical experiments. For all of the examples in this section, the scattering obstacle is a square cylinder with height \(h\), and the grid used for discretization is \(24 \times 24 \times 7\).
GMRES shows considerable improved performance when applied to the preconditioned system compared to the original discretized system for sufficiently thin inhomogeneities. Figures 3 and 5 show that for values of h near 10^{-1} (and sometimes for thicker inhomogeneities), we begin to get substantial reduction in the number of GMRES iterations required for convergence. Furthermore, the numerical experiments show that the bounds demonstrated in Corollary 4 are effective at predicting the fast convergence for the preconditioned problem. The corollary suggests that the number of iterations required for convergence can be bounded by $\lceil \log_{10}(\text{tol}) \rceil$ if $
abla$:= $\| \mathbf{1} - \mathbf{A} \mathbf{A}_0^{-1} \|_2 < 1$. In all the numerical experiments presented here, the tolerance for the relative residual is set to $\text{tol} = 10^{-8}$.

For the first set of experiments, the number of Chebyshev nodes used to compute each matrix entry is 3^2 for the two dimensional grid and 3^3 for the three dimensional...

Fig. 4. For $\kappa = 2, 4, 6, 8$ top to bottom and $h = 10^{-1}, 10^{-2}, 10^{-3}$ left to right, we plot the first 10 relative residuals and in the solid black line and, if applicable, the bound $\| \mathbf{I} - \mathbf{A} \mathbf{A}_0^{-1} \|_2$ in a dashed line. For this problem $\epsilon_0 = 3$ and the right hand side vector is a discretization of a plane wave of wave number κ traveling in the x direction.
grid, and the refractive index is constant within the scatterer. Figure 4 illustrates the relative residual norm for the first ten iterates of the GMRES method, as well as the bound for the residual $\|I - AA_0^{-1}\|_2^n$ at each iteration m if applicable.

For our next example, the refractive index is periodic and is given by

$$\varepsilon_0(x) = 1 + |\sin(3x_1)\sin(3x_2)|.$$

The number of Chebyshev nodes used to compute each matrix entry is 5^2 for the two dimensional grid and 5^3 for the three dimensional grid. Figure 5 illustrates the iterations necessary for convergence for the preconditioned and unpreconditioned system as well as the predicted iteration bound.

![GMRES Iteration counts as a function of h for k = 2, 4, 6, 8 (left to right, top to bottom). The solid black line gives the iteration count for the preconditioned system. The solid grey line gives the iteration count for the unpreconditioned system. The maximum iteration was set to 200. The dashed line gives the iteration bound $\lceil \log_{10}(10^{-8}) \rceil$ if the bound is less than 200 and $\varepsilon := \|I - AA_0^{-1}\|_2 < 1$. For this problem $\varepsilon_0(x,y) = 1 + |\sin(x)\sin(y)|$ and the right hand side vector is a discretization of a plane wave of wave number κ traveling in the x direction.](image)

6. Conclusion and Further Work. Analyzing thin, photonic band gap media with two dimensional periodic structures is important for novel optical material design [22], and the efficient computational modeling of wave propagation through such media will be important to render three dimensional computations feasible. We have shown that the asymptotic results in [16] can be used effectively to precondition the full system.

This manuscript is for review purposes only.
three dimensional scattering problem for waveguides with small thickness. Such a
preconditioner allows inner solves to be carried out in two dimensional complexity
for a three dimensional problem. We have also developed asymptotic spectral bounds
and GMRES bounds that give some indication when this preconditioning method will
be effective.

Similar limiting formula for thin high contrast scatterers have been obtained for
Maxwell equations [3], [2], [1], and the implementation of the analogous preconditioner
to fully resolve electromagnetic waves in three dimensions is the subject for future
work. Furthermore, thin geometry and high contrast of the inhomogeneity suggest the
use of more efficient meshes than the regular meshes used in the numerical examples
presented here. High resolution meshes will require the implementation fast integral
methods for this iterative approach to be feasible. An efficient and fast integral
algorithm would allow one to compute the matrix vector products required at each step
of the GMRES process at less than $O(N^2)$ complexity (see e.g. [4, 6, 11, 10, 17, 18]).
The examples included in this paper are low resolution and are included to illustrate
the effectiveness of the preconditioner and the sharpness of the bounds.

REFERENCES

waves by thin high contrast dielectrics ii: asymptotics of the electric field and a method

[3] H. Ammari, H. Kang, and F. Santosa, Scattering of electromagnetic waves by thin dielectric

[4] O. Bruno and A. Sei, A fast high-order solver for em scattering from complex penetrable
1864.

[6] Y. Chen, A fast, direct algorithm for the lippmann-schwinger integral equation in two dimen-

[10] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Com-

[12] ———, A fast, higher-order solver for scattering by penetrable bodies in three dimensions, J.

pp. 513–516.

[16] S. Moskow, F. Santosa, and J. Zhang, An approximate method for scattering by thin struc-

[17] K. Nabors, F. T. Korsmeyer, F. T. Leighton, and J. White, Preconditioned, adaptive,
multipole-accelerated iterative methods for three-dimensional first-kind integral equations

[18] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, Jour-

This manuscript is for review purposes only.