MATH 102 Exam 3 Review

1. Express \(\frac{dy}{dx} \) in terms of \(x \):
 (a) \(y = u^3 + 5; u = 3 + e^{2x} \)
 (b) \(y = e^{3w}; w = -3u + 4; u = \ln(2x) \)

2. Find the relative rate of change for \(f(x) = 3x + x \ln 5x \)

3. Evaluate:
 (a) \(\int \sqrt{2x + 1} \, dx \) (b) \(\int \left(\frac{3}{x^2} - \frac{4}{x} \right) \, dx \) (c) \(\int 4e^{3x} \, dx \) (d) \(\int xe^{x^2 + 3} \, dx \)
 (e) \(\int \frac{1 - y^2}{\sqrt{y}} \, dy \) (f) \(\int \frac{x}{(2x^2 - 5)^3} \, dx \) (g) \(\int \left[5x^2 - 2x^{-\frac{1}{2}} \right] \, dx \) (h) \(\int \left[32(x^2 + 1)^7 \right] \, x \, dx \)
 (i) \(\int_{-1}^{1} \frac{x}{x^2 + 1} \, dx \) (j) \(\int_{0}^{e} \left(\ln(t) \right)^2 \, t \, dt \)

4. What is the average value of \(f(x) = x^3 - 4x \) over \([0,4]?)

5. A company estimates that oil will be pumped from a producing field at a rate
 \(r(t) = \frac{120t}{t^2 + 1} + 3 \), \(0 \leq t \leq 20 \), where \(r \) is the rate of production (in thousands of barrels per year) \(t \) years after pumping begins. Approximately how many barrels of oil will the field produce during the first 5 years of production? The second 5 years of production?

6. Use 4 left rectangles to estimate the area under the curve \(y = 2x + 2 \) from \(x = 1 \) to \(x = 3 \).

7. If \(\frac{dy}{du} = 5 \), \(\frac{du}{dv} = -2 \), \(\frac{dv}{dx} = 3 \), what is \(\frac{dy}{dx} \)?

8. Find \(x(t) \) that satisfies: \(\frac{dx}{dt} = \frac{3\sqrt{t} - t}{2\sqrt{t}} \), \(x(27) = -100 \)

9. (a) \(\frac{d}{dx} \left(\int e^x \, dx \right) = \)

 (b) \(\int \frac{d}{dx} \left(\frac{x + 2}{x^5 + 7x + 5} \right) \, dx = \)
1. (a) \(6(3 + e^{2x})^2e^{2x}\) \(\frac{-9e^{12}}{2^9x^{10}}\)
(b) \(\frac{4 + \ln 5x}{3x + x \ln 5x}\)

2. \(\frac{2}{3}(2x + 1)^\frac{3}{2} + c\) \(\frac{-3}{x} - 4 \ln x + c\) \(\frac{4}{3}e^{3x} + c\)

3. (a) \(\frac{2}{3}(2x + 1)^\frac{3}{2} + c\) \(\frac{-3}{x} - 4 \ln x + c\) \(\frac{4}{3}e^{3x} + c\)

(d) \(\frac{1}{2}e^{x^3} + c\)
(e) \(\frac{1}{2}y - \frac{2}{5}y^5 + c\)
(f) \(\frac{1}{28(2x^2 - 5)} + c\)

4. 8

5. 60 \(\ln (26)\) thousands of barrels (about 195486 barrels)
60 \(\ln(101/26)\) thousands of barrels (about 81,421 barrels)

6. 11 7. -30 8. \(x(t) = t - \frac{3}{5}t^3 + \frac{94}{5}\)
9. (a) \(e^{x^2}\)
(b) \(\frac{x + 2}{x^2 + 7x + 5} + c\)