MATH 102 Review sheet Exam 2

1. Let \(f(x) = x^3 - 6x + 20 \)

(a) \(f' = \) _____________________

(b) \(f'' = \) ___________________

(c) Make a sign chart for \(f' \) and \(f'' \).

(d) For what values of \(x \) is \(y \) increasing? decreasing?

(e) Identify all relative maxima and minima or state that there are none (Give (x,y) coordinates)

(f) For what values of \(x \) is \(y \) concave up? concave down?

(g) Give the (x,y) coordinates of any inflection points or else state that there are none.

(h) Sketch the function labeling all relative max-min and inflection pts

2. For the following functions, determine where they are increasing, decreasing, and any local extrema:

(a) \(f(x) = 3 - \frac{4}{x} - \frac{2}{x^2} \)
(b) \(f(x) = x^4 (x - 3)^6 \)
(c) \(f(x) = (x - 2)e^{4x} \)
(d) \(f(x) = \frac{\ln(x)}{x} \)

3. Find the absolute maximum and minimum for the function

\[f(x) = x^5 - 5x^4 + 7 \] \text{ on } [-1,1], [-1,5].

4. A commercial pear grower must decide when is the optimum time to pick fruit. If pears are picked now, they will bring 30 cents / pound, with each tree yielding an average of 60 pounds of pears. If the average yield per tree increases 6 pounds per tree per week for the next 4 weeks, but the price drops 2 cents per pound per week, when should the pears be picked to realize the maximum return per tree? What is the maximum return per tree?

5. A recent study of the exercise habits of 17,000 college alumni found that the death rate (deaths per 10,000 person-years) was approximately \(R(x) = 5x^3 - 35x + 104 \), where \(x \) is the weekly amount of exercise in thousands of calories \((0 \leq x \leq 4) \). Find the exercise level that minimizes the death rate.
6. Find derivatives for the following functions:
(a) \(f(x) = x^3e^{4x} \)
(b) \(g(x) = \ln(e^x + 3x) \)
(c) \(h(x) = \left(\ln(2x + 5)\right)^3 \)

(d) \(y = \frac{e^{5x}}{x^3} \)
(e) \(f(x) = \ln\left((2x + 5)^3\right) \)
(f) \(g(x) = 2x^4 \)

7. Same as problem 1 for (a) \(f(x) = 2 - 3e^{-2x} \) and (b) \(g(x) = \ln(x^2 + 4) \)

SOME SOLUTIONS
1(a) \(f'(x) = 3x^2 - 6 \)
(b) \(f''(x) = 6x \)
(d) incr\([-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)\]
edecr \((-\sqrt{2}, \sqrt{2})\)
(e) rel max at \(-\sqrt{2}\), rel min at \(\sqrt{2}\)
(f) concave up \((0, \infty)\)
conceve down \((-\infty, 0)\)
(g) \((0, 0)\) inflection point

2(a) incr \((-\infty, -1) \cup (0, \infty)\)
decr \((-1, 0)\) local max at \(x = -1\)

(b) incr \((0, 6/5) \cup (3, \infty)\)
decr \((-\infty, 0) \cup (6/5, 3)\) local min at \(x = 0, 3\) local max at \(x = 6/5\)

(c) incr \((7/4, \infty)\)
decr \((-\infty, 7/4)\) local min at \(x = 7/4\)

(d) incr \((0, e)\) decr \((e, \infty)\) local max at \(x = e\)

3(a) max value of 7 at \((0, 7)\); min value of 1 at \((-1, 1)\)

(b) max value of 7 at \((0, 7)\) and at \((5, 7)\); min value of -249 at \((4, -249)\)

4. pick in 2.5 weeks for max return per tree of $18.75

5. 3500 calories per week

6 (a) \(f'(x) = e^{4x} \left(4x^3 + 3x^2\right) \)
(b) \(g'(x) = \frac{e^x + 3}{e^x + 3x} \)
(c) \(h'(x) = 3\left(\ln(2x + 5)\right)^2 \frac{2}{2x + 5} \)

(d) \(y' = \frac{e^{5x}(5x - 2)}{x^3} \)
(e) \(f''(x) = \frac{6}{2x + 5} \)
(f) \(g'(x) = 2^x(1 + x \ln 2) \)

7(a) \(f'(x) = 6e^{-2x} \)
(b) \(f''(x) = -12e^{-2x} \)
(d) \(f \) is always increasing \((-\infty, \infty)\)

(e) There are no local extrema
(f) \(f \) is always concave down
(g) There are no inflection points.

(b) \(a \) g'(x) = \frac{2x}{x^2 + 4}
(b) \(b \) g''(x) = \frac{2(4 - x^2)}{x^2 + 4}
(d) increasing \((0, \infty)\); decr \((-\infty, 0)\)

(e) local min at \((0, \ln 4)\)
(f) concave up \((-2, 2)\); concave down \((-\infty, -2) \cup (2, \infty)\)

(g) inflection points: \((2, \ln 8), (-2, \ln 8)\)