Due: Wednesday, January 26

Note: We are be re-visiting questions about metric spaces throughout the term.

1. Let X be an infinite set. For $p, q \in X$, define
 \[d(p, q) = \begin{cases}
 1, & \text{if } p \neq q, \\
 0, & \text{if } p = q.
 \end{cases} \]
 Prove that this is a metric. Which subsets of the resulting metric space are open? Which are closed? Which are compact?

2. For $x, y \in \mathbb{R}$, define
 \[\begin{align*}
 d_1(x, y) &= (x - y)^2, \\
 d_2(x, y) &= \sqrt{|x - y|}, \\
 d_3(x, y) &= |x^2 - y^2|, \\
 d_4(x, y) &= |x - 2y|, \\
 d_5(x, y) &= \frac{|x - y|}{1 + |x - y|}.
 \end{align*} \]
 Determine for each of these whether it is a metric or not.

3. (a) Show that if $\{K_\alpha\}$ is a collection of closed subsets of \mathbb{R} such that the intersection of every finite subcollection of $\{K_\alpha\}$ is nonempty, then the full intersection $\bigcap_\alpha K_\alpha$ may be empty.
 (b) Show that if $\{K_\alpha\}$ is a collection of bounded subsets of \mathbb{R} such that the intersection of every finite subcollection of $\{K_\alpha\}$ is nonempty, then the full intersection $\bigcap_\alpha K_\alpha$ may be empty.
 (c) Find a metric space X and a subset K of X which is closed and bounded but not compact.

4. Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that E and \overline{E} have the same limit points. Do E and E' always have the same limit points?

5. (a) If A and B are disjoint closed sets in a metric space X, prove that they are separated.
 (b) Prove the same for disjoint open sets.