1. (a) Describe a subspace of $\mathbb{R}^{2\times2}$ that contains the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ but not the matrix $B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.
(b) If a subspace of $\mathbb{R}^{2\times2}$ contains A and B, must it contain the identity matrix I?
(c) Describe a subspace of $\mathbb{R}^{2\times2}$ that contains no nonzero diagonal matrices.

Answer: (a) The smallest such subspace would be all scalar multiples of the matrix A, that is, the subspace \(\left\{ \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix} : c \in \mathbb{R} \right\} \).
(b) Note: $I = A - B$.
(c) Let the subspace consist of all multiplies of the matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

2. (a) Show that the set of all invertible matrices in $\mathbb{R}^{2\times2}$ is not a subspace.
(b) Show that the set of all singular (=non-invertible) matrices in $\mathbb{R}^{2\times2}$ is not a subspace.

Answer: (a) The identity matrix I is invertible, but $I - I = 0$ is not invertible.
(b) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, so neither matrix is invertible, but $I = A + B$.

3. If A is any 5×5 invertible matrix, then its column space is Why?

Answer: If A is invertible, then it must have 5 pivots. In particular, the linear system $Ax = b$ is always solvable. Hence, its column space must be all of \mathbb{R}^5.

4. True or false (with a counterexample if false, and a reason if true):
 (a) The vectors b that are not in the column space of a matrix A form a subspace.
 (b) If the column space of A contains only the zero vector, then A is the zero matrix.
(c) The column space of $2A$ equals the column space of A.

(d) The column space of $A - I$ equals the column space of A.

Answer: (a) FALSE: If A is invertible and is in $\mathbb{R}^{2 \times 2}$, then its column space is \mathbb{R}^2. The set of vectors not in the column space then must be the empty set. This is NOT a subspace.

(b) TRUE: If the column space of A contains only the zero vector, then every pivot of A must be zero. Hence, no entry of A can be non-zero. In other words, $A = 0$.

(c) TRUE: The column space of $2A$ equals the column space of A, since every column of $2A$ is a non-zero multiple of the corresponding column of A.

(d) FALSE: Take $A = I$. Then $A - I$ is the zero matrix.

5. Construct a 3×3 matrix whose column space contains the vectors $(1, 1, 0)$ and $(1, 0, 1)$ but not the vector $(1, 1, 1)$.

Answer: The easiest example is to take $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. It is easy to verify that the vector $(1, 1, 1)$ is not a linear combination of $(1, 1, 0)$ and $(1, 0, 1)$.

2