Consider the size of \(\frac{dP}{dT} \). In the interval \(0 \leq T \leq 700 \),

resistance of the thermometer most sensitive and least sensitive to temperature change.

where \(T \) is the temperature in degrees Celsius. Where in the interval from 0°C to 700°C is the

\[R = 10 + 0.04124 T - 1.779 \times 10^{-5} T^2 \]

Platinum resistance thermometer is given by

In the temperature range between 0°C and 700°C, the resistance \(R \) is

\[R = 10 + 0.04124 T - 1.779 \times 10^{-5} T^2 \]
\[f(x, y) \cdot g(x, y) = (f(x) \cdot g(x)) \]

If & would be nice if:

\[f(x) \cdot g(x) = f(x) + g(x) \]

Hence we have
The "Mishell Thmиться" Formulas Don't Work. Example: Show that

\[f(x) = x^2 \quad g(x) = x + 1 \]

\[f(x) \cdot g(x) = x^2(x+1) \]

\[f(x) + x = 1 + x \]

\[f(x) \cdot g(x) \neq (x^2 + x) \cdot 2 \]

\[\frac{d}{dx} (x^2 + x) = 2x + 1 \]

Before finishing our what is true,
\[
\lim_{y \to 0} \frac{f(y)g(y)}{f(x+y)g(x+y) - f(x)g(x)}
\]

How do you prove such a thing?

Product Rule:

More complicated formulas are true.
\[
\gamma \left(x f (x) g (x) - g (x) \right) + \gamma \left((x f g (x) + (y f g (x) - (y + x) f (x) f (x) - (y + x) g (x) \right) = \gamma \\
\text{All the other variables} \quad = \quad \gamma \left(x f (x g (x) - f (x) g (x) \right)
\]
How can you prove this?

\[
\frac{(x \circ \tilde{B})}{x, \tilde{B}(x) + (x) \circ \tilde{B}(x), f} = \left(\frac{x \circ \tilde{B}}{x, f} \right)
\]

Quotient Rule.
\[
\frac{d}{dx} \left(\frac{g(x)}{f(x)} \right) = \frac{f(x) g'(x) - g(x) f'(x)}{f(x)^2}
\]

Quotient Rule

\[
\frac{d}{dx} \left(g(x) f(x) \right) = g(x) f'(x) + f(x) g'(x)
\]

Product Rule