Show all your work on the exam paper, legibly and in detail, to receive full credit. The use of a calculator or any other electronic device is prohibited. You may only use techniques used in sections 3.1-3.5.

1. Find \(\frac{dy}{dx} \)
 a) \(y = \pi^3 \)

 \[y \text{ IS A CONSTANT, so } \frac{dy}{dx} = 0 \]

b) \(y = -3x^{-8} + 2\sqrt{x} \)

 \[\frac{dy}{dx} = -3 \cdot x^{-8-1} + 2 \cdot \frac{1}{2} x^{-1/2} \]

 \[= -3\cdot x^{-9} + \frac{2}{(1)\cdot x^{-1/2}} \]

 \[= -3\cdot x^{-9} + 2\cdot x^{1/2} \]

2. Find \(\frac{d^2y}{dx^2} \) if \(y = 7x^3 - 5x^2 + x \).

 \[\frac{dy}{dx} = 21x^2 - 10x + 1 \]

 \[\frac{d^2y}{dx^2} = 42x - 10 \]
3. Using the definition of the derivative, find the derivative of \(f(x) = 3x^2 - 2x \).

\[
\frac{f(x+h) - f(x)}{h} = \frac{(3(x+h)^2 - 2(x+h))}{h} - \frac{(3x^2 - 2x)}{h}
\]

\[
= (3 \left(x^2 + 2xh + h^2 \right) - 2x - 2h) - (3x^2 - 2x)
\]

\[
= \frac{3x^2 + 6xh + 3h^2 - 2x - 2h - 3x^2 + 2x}{h}
\]

\[
= 6x + 3h - 2
\]

\[
f'(x) = \lim_{h \to 0} \frac{6x + 3h - 2}{h} = \frac{6x - 2}{h}
\]

4. Suppose \(f(x) \) is a function with \(f(2) = -2 \) and \(\frac{df}{dx}(2) = -1 \). Suppose \(g(x) \) is defined by \(g(x) = x^2 + x^3 f(x) \). What is \(\frac{dg}{dx}(2) \)?

\[
\frac{dg}{dx} = 2x + 3x^2 f(x) + x^3 \frac{df}{dx}
\]

\[
\frac{dg}{dx}(2) = 2 - 2 + 3 \cdot 2^2 \cdot (-2) + 2^3 \cdot (-1)
\]

\[
= 4 - 8 - 24 - 8 = -28
\]
5 a) Find the derivative of the functions. Note: you do not have to simplify your answers.

\[f(x) = \sec(x)\tan(x) \]

\[f' = (\sec(x))' \tan(x) + (\sec(x)) (\tan(x))' \]

\[= \sec(x) \tan(x) \cdot \tan(x) + \sec(x) \sec^2(x) \]

\[= \sec(x) \tan^2(x) + (\sec(x))^3 \]

5 b) \[f(x) = \frac{5 - \cos(x)}{5 + \sin(x)} \]

\[f' = \left(\frac{5 - \cos(x)}{5 + \sin(x)} \right)' \]

\[= \frac{(5 - \cos(x))'(5 + \sin(x)) - (5 - \cos(x))(5 + \sin(x))'}{(5 + \sin(x))^2} \]

\[= \frac{\sin(x)(5 + \sin(x)) - (5 - \cos(x))\cos(x)}{(5 + \sin(x))^2} \]

\[= \frac{5\sin(x) + \sin^2(x) - 5\cos(x) + \cos^2(x)}{(5 + \sin(x))^2} \]

\[= \frac{5\sin(x) + \sin^2(x) - 5\cos(x) + \cos^2(x)}{(5 + \sin(x))^2} \]

\[= \frac{(5\sin(x) - 5\cos(x) + 1)}{(5 + \sin(x))^2} \]
Given the function \(f(x) = \frac{1}{x} \):

6 a) Find the average rate of change of \(f(x) \) with respect to \(x \) over the interval \([1, 3]\).

\[
\text{A.R.C.} = \frac{f(3) - f(1)}{3 - 1}
\]

\[
= \frac{\frac{1}{3} - \frac{1}{1}}{3 - 1}
\]

\[
= \frac{-2}{3}
\]

6 b) Find the instantaneous rate of change of \(f \) with respect to \(x \) at \(x = 2 \).

\[
f(x) = \frac{1}{x} = x^{-1}
\]

\[
f'(x) = -1 \cdot x^{-2} = \frac{-1}{x^2}
\]

\[
f'(2) = \frac{-1}{4}
\]
(prob 6, continued) 6 c) Find the equation to the line tangent to $f(x)$ at $x = 2$.

$$y = f(a) + f'(a)(x-a)$$

EQUATION OF TANGENT LINE THROUGH $(a, f(a))$

For us:

$$f(x) = \frac{1}{x} \quad f(2) = \frac{1}{2}$$

$$f'(x) = -\frac{1}{x^2} \quad f'(2) = -\frac{1}{4}$$

$$y = \frac{1}{2} + -\frac{1}{4} (x - 2)$$

$$= \frac{1}{2} - \frac{x}{4} + \frac{1}{2} = 1 - \frac{x}{4}$$

$$y = 1 - \frac{x}{4}$$

EQUATION OF TANGENT LINE
7 a) Find $\frac{d^2 y}{dx^2}$ if $y = x \cos x$

$$
y' = 1 \cdot \cos x - x \sin x
$$

$$
y'' = \cos x - x \sin x
$$

$$
y''' = -\sin(x) - \left[\sin(x) + x \cos(x) \right]
$$

$$
= -2\sin(x) - x \cos(x)
$$

(bonus) 7 b) (harder!!): If $y = x \cos x$, what is $\frac{d^4 y}{dx^4}$? ?? MAYBE THERE IS A PATTERN:

$$
\frac{d^3 y}{dx^3} = -2 \cos(x) - \left[\cos(x) + x (-\sin(x)) \right]
$$

$$
= -3 \cos(x) + x \sin(x)
$$

$$
\frac{d^4 y}{dx^4} = 3 \sin(x) + \left[\sin(x) + x \cos(x) \right]
$$

$$
= 4 \sin(x) + x \cos(x)
$$

$$
\frac{d^5 y}{dx^5} = 4 \cos(x) + \left[\cos(x) - x \sin(x) \right]
$$

$$
= 5 \cos(x) - x \sin(x)
$$

NOW $\frac{d^4 y}{dx^4} = \cos(x) - x \sin(x)$, SO IT LOOKS LIKE IT "REPEATS" AFTER 4 DERIVATIVES, EXCEPT FOR COEFFICIENT.

GUESS: $\frac{d^4 y}{dx^4} = 41 \cos(x) - x \sin(x)$