QUIZ 12 ANSWERS

1. A) Future value (compounding) = Present value $\times (1 + \frac{r}{m})^{mt}$
1. B) Present value (compounding) = Future value $\times (1 + \frac{r}{m})^{-mt}$
1. C) Accumulated amount (of an annuity) = Payment $\times \frac{(1 + \frac{r}{m})^{mt} - 1}{r/m}$
1. D) Payment = Accumulated amount (of an annuity) $\times \frac{r/m}{(1 + \frac{r}{m})^{mt} - 1}$
1. E) Effective rate (or APY) = $(1 + \frac{r}{m})^m - 1$
1. F) Simple interest = Deposit \times Rate \times Time
1. G) Present value of an annuity = Payment $\times \frac{1 - (1 + \frac{r}{m})^{-mt}}{r/m}$
1. H) Payment = Present value of an annuity $\times \frac{r/m}{1 - (1 + \frac{r}{m})^{-mt}}$
1. I) Debt (present value) = Payment $\times \frac{1 - (1 + \frac{r}{m})^{-mt}}{r/m}$
1. J) Payment = Debt $\times \frac{r/m}{1 - (1 + \frac{r}{m})^{-mt}}$
1. K) Term of an annuity = $\frac{\ln \left(1 + \frac{A/r}{m}\right)}{m \ln \left(1 + \frac{r}{m}\right)} = \frac{\log \left(1 + \frac{A/r}{m}\right)}{m \log \left(1 + \frac{r}{m}\right)}$
1. L) Number of periods of an annuity = $\frac{\ln \left(1 + \frac{A/r}{m}\right)}{\ln \left(1 + \frac{r}{m}\right)} = \frac{\log \left(1 + \frac{A/r}{m}\right)}{\log \left(1 + \frac{r}{m}\right)}$
1. M) Balance unpaid after t_0 years = Payment $\times \frac{1 - (1 + \frac{r}{m})^{-m(t-t_0)}}{r/m}$
1. N) Sinking fund payment = Accumulated amount $\times \frac{r/m}{(1 + \frac{r}{m})^{mt} - 1}$

2. A)

\[
\begin{align*}
-2x + 2y &= -20 \\
x - y &= 10
\end{align*}
\]

The system is dependent, it has infinitely many solutions given by $x = t, y = t - 10$, where t runs from $-\infty$ to $+\infty$. Both equations describe the same line $y = x - 10$ (see the graph).

2. B)

\[
\begin{align*}
3x - 2y &= 30 \\
-6x + 4y &= 30
\end{align*} \iff \begin{align*}
3x - 2y &= 30 \\
3x - 2y &= -15
\end{align*} \iff \begin{align*}
y &= 1.5x - 15 \\
y &= 1.5x + 7.5
\end{align*}
\]
This system is inconsistent, it has no solutions. Equations describe two (distinct) parallel lines (see the graph).

2. C) Let \(n \) be the number of nickels and let \(d \) be the number of dimes. Then
\[
\begin{align*}
\begin{cases}
 n + d = 60 \\
 5n + 10d = 430
\end{cases} & \iff \\
\begin{cases}
 n + d = 60 \\
 n + 2d = 86
\end{cases} & \iff \\
\begin{cases}
 n + d = 60 \\
 d = 26
\end{cases} & \iff \\
\begin{cases}
 n = 34 \\
 d = 26
\end{cases}
\end{align*}
\]
The system has a solution and this solution is unique. The equations \(d = -n + 60 \) and \(d = -.5n + 43 \) describe two lines with a single point \((34, 26)\) in common (see the graph).