Worksheet 1/30

1. Verify that \(f(x) = |x| \) is not differentiable at the origin.

In 2–4, use the shape of the graph of \(f(x) \) to plot \(f'(x) \). Do not use any formulas.

2. \(f(x) = |x|, \quad -1 \leq x \leq 1 \).
3. \(f(x) = x^2, \quad -1 \leq x \leq 1 \).
4. \(f(x) = \sin x, \quad 0 \leq x \leq \pi \).

5. Find the derivative of \(f(x) = x^5 \) directly by definition.

In 6–9, find the derivative using any of the following rules: \(c' = 0 \), \((x^p)' = px^{p-1}\), \((c f(x))' = c f'(x)\), \((f(x) + g(x))' = f'(x) + g'(x)\), where \(c \) and \(p \) are constants.

6. \(f(x) = (\sqrt{2} + 1)^{10} \)
7. \(f(x) = x^4 - x^3 + x^2 - x + 999 \) (find \(f', f'', f''' \), \(f^{(4)} \), \(f^{(5)} \))
8. \(f(x) = (3x + 5)^2 \)
9. \(f(x) = \sqrt{\sqrt{x}} \)

10. Find the 9th derivative of \(((x + 1)^2 + 1)^2 \).
11. Find the 8th derivative of \(((x + 1)^2 + 1)^2 \).