PRACTICE PROBLEMS

1. Let \(u(t) = 2t^2 \).
 A) Find the average rate of change of \(u \) over the interval \(0 \leq t \leq 1 \).
 B) Find the instantaneous rate of change of \(u \) at \(t = 0 \).
 C) Find the instantaneous rate of change of \(u \) at \(t = t_0 \).
 D) The average rate of change is the slope of a certain secant line and the instantaneous rate of change is the slope of a certain tangent line. Sketch the graph of \(u = u(t) \) together with those two lines illustrating parts A) and B).

2. Use the definition of the derivative to compute \(\frac{d}{dx} \sqrt{1 + x} \) at \(x_0 = 8 \).

3. Find \(\frac{d}{dx} (1 - x)(1 + x)(1 + x^2)(1 + x^4) \) at \(x = 1 \).

4. Find
 \[
 \frac{d^2}{dx^2} \left(\frac{3x - 2}{5x} \right).
 \]

5. Find all values of \(x \) at which the tangent line to \(y = \frac{x^2 + 1}{x+1} \) is parallel to \(y = x \).

6. Find
 \[
 \frac{d}{dx} \left(\frac{\sin x \sec x}{1 + x \tan x} \right).
 \]

7. Show that \(y = x \sin x \) is a solution to \(y'' + y = 2 \cos x \).

8. Write the equation of the tangent line to the graph of \(y = \tan x \) at \(x = -\pi/4 \).