1. Find the limit
A) \(\lim_{x\to\infty} \arcsin\left(\frac{x}{1+2x}\right) \) B) \(\lim_{x\to\infty} \frac{2-x}{\sqrt{7+6x^2}} \)
C) \(\lim_{x\to+\infty} \ln(3x + 1) - \ln(2x^2 + 1) \)
D) \(\lim_{x\to\infty} \cos\left(\frac{1}{x^2}\right) \) E) \(\lim_{x\to0} \cos\left(\frac{1}{x^2}\right) \).

2. Find a value for the constant \(k \) that makes
\[
f(x) = \begin{cases}
\sin 3x & x \neq 0, \\
k & x = 0,
\end{cases}
\]
continuous at \(x = 0 \).

3. Consider the function \(f(x) = \frac{x^2+3x+2}{x^2+4x+3} \).
A) There are two values of \(x \) at which \(f(x) \) is not defined. What are these values? Call them \(r \) and \(s \).
B) Is it possible to define \(f(x) \) at \(r \) so that \(f \) is continuous at \(r \)? If so, what should the value \(f(r) \) be? If not, explain why not.
C) Is it possible to define \(f(x) \) at \(s \) so that \(f \) is continuous at \(s \)? If so, what should the value \(f(s) \) be? If not, explain why not.

4. Let \(f(x) = 4x^2 + x \).
A) Find the average rate of change of \(f \) with respect to \(x \) over the interval \([1, 4]\).
B) Find the instantaneous rate of change of \(f \) with respect to \(x \) at \(x = 4 \) (directly from definition).
C) Find an equation of the tangent line to the curve \(y = f(x) \) at \(x = 4 \).

5. Let \(f(x) = |x| \). Sketch the graph of
A) \(y = f(x) \)
B) \(y = f'(x) \), the derivative of \(f \)
C) \(y = f''(x) \), the derivative of \(f' \).