TEST 2

This test has been modified: the original was based on a different syllabus.

1. Find the points of intersection of \(y = 2x - x^2 \) and \(y = x - 2 \). Set up and evaluate an integral that represents the area between the graphs.

2. The region bounded by \(y = 9 - x^2 \), \(y = 0 \), and \(x = 0 \) is revolved about the \(x \)-axis. Set up and evaluate an integral that represents the volume of the resulting solid.

3. The region bounded by \(y = x^2 + 1 \), \(y = x \), \(x = 0 \), and \(x = 2 \) is revolved about the \(x \)-axis. Find the volume of the resulting solid.

4. The region bounded by \(y = e^x \), \(y = 1 \) and \(x = \ln 2 \) is revolved about the line \(x = \ln 2 \). Set up but do not evaluate an integral that represents the volume of the resulting solid.

5. Find the arc length of the curve \(y = \frac{x^2}{3} \), \(0 \leq x \leq 1 \).

6. Evaluate \(\int e^x \cos x \, dx \).

7. Evaluate the integral a) \(\int_1^{e^2} \ln t \, dt \) b) \(\int_1^{e^2} (\ln t)^2 \, dt \).