The IEEE 32-bit floating-point format is assumed below.

1. Determine the gap between 0.5, 0.125, 2^{-148}, 1000 and the next largest floating-point number.

2. Write the representations of -10, 50, 51, and 100.

3. What number is represented by $[0 | 00000001 | 00000000000000000000000]$?

4. Write the representations of 0.3 and $1/3$ using each of the four rounding modes.

5. Show that the equality $(x + y) + z = x + (y + z)$ may fail for positive numbers.

6. (Extra) Let X be a given array of numbers of length N.
 The following summation algorithm is relatively very accurate.

 $$
 s = X(1);
 c = 0;

 for \ k = 2 : N
 \begin{align*}
 y &= X(k) - c; \\
 t &= s + y; \\
 c &= (t - s) - y; \\
 s &= t;
 \end{align*}

 Do you see why?