Assume the **IEEE single precision** floating-point format ($p = 24$).

1. Determine the representations of 2, 30, 31, -32, 20.75×2^{100}, and 0.2.

2. Determine the representation of $1/10$ and of $1 + 2^{-25}$ using each of the four rounding modes.

3. Recall that the smallest positive normalized number is $N_{\min} = 2^{-126}$ and the largest normalized number is $N_{\max} = (2 - 2^{-23}) \times 2^{127}$. For x in the normalized range $N_{\min} \leq |x| \leq N_{\max}$, the floating-point value \tilde{x} of x satisfies

 $$\tilde{x} = x (1 + \text{error}),$$

 where the magnitude of the error is no greater than $\epsilon = 2^{-23}$, machine epsilon. Does this estimate hold for $0 < x < N_{\min}$?

4. Let a_1, a_2, \ldots, a_n be given floating-point numbers. Consider evaluating the product $a_1 \cdot a_2 \cdot \ldots \cdot a_n$. Follow the same logic as in the example on summation (see A&H 2.4) to estimate the effect of rounding after each multiplication (for simplicity, ignore terms nonlinear in ϵ). How large can the error be? How large can the relative error be? Does the order of multiplication matter?