Euler-Maclaurin formula. The error of the trapezoidal sum cancels out completely. This is confirmed by the

\[M_\delta \text{subintervals (length } \delta \text{).} \]

For instance, \(\ln 2 - R_n < \frac{1}{4n} < L_n - \ln 2 < \frac{1}{2n} \).

\[M_n = \sum_{k=1}^{n} \frac{1}{n+k} - \frac{1}{n+k+1} \]

f) \(M_n = \sum_{k=1}^{n} \frac{1}{n+k} - \frac{1}{n+k+1} \).

g) \[|\ln 2 - M_n| < \frac{b-a}{24} \max_{[a,b]} |f''(x)| \delta^2 < \frac{1}{12n\pi}. \]

In fact, \(0 < \ln 2 - M_n < \frac{1}{24n^2}. \)

2. Let \(f(x) \) be a cubic. Simpson’s method requires an even number of equal subintervals (length \(\delta \)). Consider any 3 consecutive nodes \(x_{m-1}, x_m, x_{m+1} \) and let \(q_m(x) \) be the quadratic polynomial that agrees with \(f(x) \) at these nodes. Then \(f(x) - q_m(x) \) is a cubic polynomial with roots \(x_{m-1}, x_m, x_{m+1} \). Write \(f(x) - q_m(x) \) as \(u(h) = Ah^3 + Bh^2 + Ch + D \), where \(h = x - x_m \). Then

\[u(0) = u(h) = u(-h) = 0, \]

which implies that \(B = D = 0 \). Hence \(u(h) \) is odd and

\[\int_{x_{m-1}}^{x_{m+1}} (f(x) - q_m(x)) \, dx = \int_{-\delta}^{\delta} (Ah^3 + Ch) \, dh = 0, \]

i.e., the error of \(\int_{x_{m-1}}^{x_{m+1}} q_m(x) \, dx \) is zero for each \(m \).

Quiz 1

A) \(L_3 = \frac{1}{3} \ln \frac{20}{9}, R_3 = \frac{1}{3} \ln \frac{40}{9}. \)
B) \(L_3 < I < R_3 \) because \(\ln x \) is increasing.
C) \(I - L_3 > R_3 - I \) because \(\ln x \) is increasing and concave down.
D) \(M_3 = \frac{1}{3} \ln \frac{77}{31}. \)
E) \(M_3 > I \) because \((\ln x)' = 1/x \) is decreasing.

Homework 2

\[I = \int_0^{2\pi} \cos x \, dx = 0 \text{ and } \]

\[T_n = \frac{2\pi}{n} \left(\frac{1}{2} + \sum_{k=1}^{n-1} \cos\left(\frac{2\pi}{n} k \right) \right) \]

\[= \frac{2\pi}{n} \sum_{k=0}^{n-1} \cos\left(\frac{2\pi}{n} k \right) = 0. \]

Indeed, the sum of \(n > 1 \) vectors pointing to the vertices of a regular \(n \)-gon from 0 to 2\(\pi \), the center is the zero vector, and hence their \(x \)-components \(\cos(\frac{2\pi}{n} k) \) sum up to 0.

Thus \(I = T_n \) for every \(n > 1 \); due to symmetry and periodicity of \(\cos x \) on \([0, 2\pi]\), the error of the trapezoidal sum cancels out completely. This is confirmed by the Euler-Maclaurin formula.