7. Let u be a given vector in the sum $U_1 + \cdots + U_n$. Prove that the sum is direct if and only if u has a unique expression $u = u_1 + \cdots + u_n$ with $u_j \in U_j$ for $j = 1, \ldots, n$.

8. Prove that $\mathcal{P}(\mathbb{C})$ is not finite dimensional.

9. Suppose that p_0, \ldots, p_n are polynomials over \mathbb{F} such that $p_k(1) = 0$ for each k. Can they be linearly independent in $\mathcal{P}_n(\mathbb{F})$?

10. Let U be a subspace of a space V and $\dim U = \dim V$ be finite. Prove that $U = V$. What if the dimensions are infinite?

11. Let U and V be two subspaces of \mathbb{R}^8 such that $\dim U = 3, \dim V = 5$, and $U + V = \mathbb{R}^8$. Prove that $U \cap V = \{0\}$.

12. Let U be the subspace of \mathbb{R}^5 consisting of vectors $(x_1, x_2, x_3, x_4, x_5)$ with $x_1 = 3x_2$ and $x_3 = 7x_4$. Find a basis for U.

13. Let V be a finite dimensional direct sum of subspaces U_1, \ldots, U_n. Show that $\dim V = \dim U_1 + \cdots + \dim U_n$.