HOMEWORK 3

Due Friday, February 13

Each problem is worth 10 points.

14. Let the vectors u_1, \ldots, u_n span V and let T be a linear transformation of V onto W. Prove that Tu_1, \ldots, Tu_n span W.

15. Let the vectors u_1, \ldots, u_n be linearly independent in V and let T be a one-to-one linear transformation of V into W. Prove that Tu_1, \ldots, Tu_n are linearly independent.

16. Let U be a subspace of a finite dimensional space V. Construct a linear transformation T on V such that null $T = U$. Can you construct two different ones?

17. Let U be a subspace of a finite dimensional space V. Construct a linear transformation T on V such that range $T = U$. Can you construct two different ones?

18. Let S and T be two linear transformations on a finite dimensional vector space. Prove that if $ST = I$ then $TS = I$. Here I is the identity transformation.

19. Give an example of a linear transformation whose null space is the same as its range. Can you think of one on \mathbb{R}^3?