1. Find the equation of a line. Write your answer in slope-intercept form.
 (A) passes through (3, -4), (-7, 1) (B) passes through (-3, 2), (8, 2)
 (C) passes through (-8, 5), slope undefined. (D) has x-intercept x=3, is perpendicular to the line 2x + 3y = 1

2. Find the slope and y-intercept of each line. Sketch the line. (A) y = 6-x (B) y = 3x (C) y = -2x + 4

3. Evaluate f(-1), f(-3), f(2), where
 \[f(x) = \begin{cases}
 2x^2 - 1 & \text{if } x \leq -3 \\
 5 - 2x & \text{if } -3 < x \leq -1 \\
 4 & \text{if } x > -1
 \end{cases} \]

4. Evaluate \(f(t+1) \) and simplify, where \(f(x) = x^2 + 1 \)

5. Find the domain of each function. Write your answer in interval form
 (A) \(f(x) = \sqrt{25 - x^2} \) (B) \(h(x) = \frac{\sqrt{x-1}}{x^2 - x - 6} \)

6. If the graph of the line \(y = mx + b \) is reflected in the y-axis, what will be the slope and intercepts of the new graph?

7. The relation of \(x \) and \(y \) is given. In each case, determine whether \(y \) is a function of \(x \).
 If \(y \) is a function of \(x \), does this function have an inverse?

\[\begin{array}{c|cccc}
(A) & X & 2 & 3 & 5 & 6 \\
Y & 10 & 4 & 5 & 3 & 7 \\
\end{array} \]

8. \(f(x) = \frac{1}{x} \), \(g(x) = \frac{x-1}{x+1} \). Find (A) \(f \circ g \) (B) \(g \circ f \)
 Find the domain of \(f \), \(g \) and of each composite function.

9. Let \(f(x) = x^2 + 7 \), \(g(x) = \frac{1}{x-6} \), \(h(x) = \sqrt{6x} \). Find \((g \circ f \circ h)(x) \)

10. Suppose \(f(x) = x^2 - 9 \), \(g(x) = \sqrt{9-x^2} \). Find (a) \((g \circ f)(x) \) (b) \((f \circ g)(0) \)
 Is it true that \(g = f^{-1} \)?

11. Verify that \(g = f^{-1} \). (A) \(f(x) = \frac{1}{2} x + 7 \) and \(g(x) = 2x - 14 \) (B) \(f(x) = \sqrt{x-8} \) and \(g(x) = x^2 + 8 \)

12. Find the inverse of \(f \) (A) \(f(x) = \frac{1}{2} x - 3 \) (B) \(f(x) = \sqrt{x+1} + 3 \) (C) \(f(x) = \frac{1-x}{2-x} \)

13. Determine if the function is odd, even, or neither. (A) \(f(x) = x^3 + 6 \) (B) \(f(x) = x^2 - 1 \) (C) \(g(x) = \sqrt{x} \) (D) \(f(x) = \frac{x^2 - 3}{x^3 + 2x} \)

14. The graph of \(y = g(t) \) contains the point (3, 4). What point must be on the following graph?
 (a) The graph of \(g(-t) \) must contain the point ______
 (b) The graph of \(-g(t) \) must contain the point ______
 (c) If \(g(t) \) is an even function, then graph of \(g(t) \) must also contain the point ______
 (d) If \(g(t) \) is an odd function, then graph of \(g(t) \) must also contain the point ______

15. For each of the following functions (a) identify the parent function \(f(x) \) (b) describe the transformations from \(f \) to \(h \)
 (c) Sketch the graph of \(h \) (d) Write \(h \) in terms of \(f \).
 (I) \(h(x) = -2 \sqrt{x-4} + 9 \) (II) \(h(x) = -|x+4| + 6 \)

16. Describe the graph each function and compare it to the graph of \(\varphi(x) = x^2 \). Express the function using \(\varphi \)
 (A) \(g(x) = 1 - 2x^2 \) (B) \(f(x) = (x-3)^2 \) (C) \(h(x) = (-x-3)^2 \)
17. Consider the function \(y = f(x) \) drawn below. Match the graph of \(y = -2f(-x) \) with the following graphs

18. Use the graphs of \(f(x) \) and \(g(x) \) to answer the following
(A) What is the value of \(f(-4) \)?
(B) For what values of \(x \) is \(f(x) = g(x) \)?
(C) Estimate the solution of the equation \(g(x) = 5 \)
(D) On what interval is the function \(f \) decreasing?

19. Suppose \(f(x) = 2(x + 3)^2 - 18 \). (A) Find the vertex of \(f \) (B) Find the minimum value of \(f \) (C) Find \(x \) and \(y \) intercepts

20. Find the vertex by completing the square
(A) \(f(x) = -x^2 - 8x + 12 \) (B) \(f(x) = x^2 + 5x - 4 \) (C) \(h(x) = 4x^2 + 4x + 13 \) (D) \(f(t) = 1 + 4t - 2t^2 \)

21. For each quadratic function in Problem 20, find the vertex by the formula.

22. Write the equation of the parabola.

23. The total revenue \(R \) earned (in $) from producing a gift box of candles is given by \(R(p) = -10p^2 + 800p \), where \(p \) is the price per unit (in $)
(A) Find the revenue when the price per box is $20, $30
(B) Find the unit price that will yield a maximum revenue. What is the maximum revenue?

24. Sketch the graphs of \(y(x) \) and of its transformation \(f(x) \). (identify the \(x \)-intercepts and \(y \)-intercepts)
(A) \(y = x^3 \), \(f(x) = -(x-4)^3 \) (B) \(y = x^4 \), \(f(x) = 2-x^4 \) (C) \(y = x^5 \), \(f(x) = (1/2)x^5 + 3 \)

25. Factor the following polynomials. Find all real zeros and determine the multiplicity of each zero.
(A) \(x^2 - 2x - 48 \) (B) \(4x^2 - 15x - 4 \) (C) \(2x^2 + 11x - 21 \) (D) \(x^3 - 4x^2 - 12x \) (E) \(x^4 - x^3 - 2x^2 \)

26. Use factoring to solve the equations
(A) \(x^2 - 3x^2 - 36x + 108 = 0 \) (B) \(4x^4 + 12x^2 = 40x \)

27. Let \(f(x) = -0.3x(x+2)^2(x-3) \) (A) Match the function with the graph (B) Find the leading term

28. Let \(f(x) = 0.5x(x-2)^2(x+2) \). Identify the leading coefficient. Identify the zeros and their multiplicities. Plot test points. Sketch the graph.

29. Use long division to simplify the fraction \(\frac{6 - 4x^3}{2x + 1} \). Write the answer in the form \(q(x) + \frac{r(x)}{2x + 1} \)

2012