1. A) First order. B) Nonlinear. C) \(y' = \frac{1}{k} \) along \(y = k \).
D) No, \(y \) is increasing if positive.
E) \(yy' = 1 \)
\[y^2/2 = x + c \]
\[y^2 = 2x + c \quad \text{and} \quad y(0) = 1, \]
\[y = \sqrt{2x + 1}. \]
F) The solution is defined for \(x > -\frac{1}{2} \). Exclude \(x = -\frac{1}{2} \) because a solution must be continuously differentiable.

2. A) Separation of variables.
Observe that \(y = 2 \) is a solution. If \(y \neq 2 \) then
\[\frac{dy}{y - 2} = -dx \]
\[\ln |y - 2| = -x + c \]
\[|y - 2| = ce^{-x} \]
\[y = 2 + ce^{-x}. \]
B) Integrating factor.
\[y' + y = 2 \]
\[e^x y' + e^x y = 2e^x \]
\[(e^x y)' = 2e^x \]
\[e^x y = 2e^x + c \]
\[y = 2 + ce^{-x}. \]
C) Undetermined coefficients.
If \(y_0' = -y_0 \) then \(y_0 = ce^{-x} \). Look for \(y \) in the form \(y = y_0 + a, \) a constant:
\[(y_0 + a)' = -(y_0 + a) + 2 \]
\[y_0' = -y_0 - a + 2 \]
\[a = 2. \]
Hence \(y = ce^{-x} + 2. \)
C*) Variation of parameters.
If \(y_0' = -y_0 \) then \(y_0 = ce^{-x} \). Look for \(y \) in the form \(y = c(x)e^{-x}: \)
\[(c(x)e^{-x})' = -c(x)e^{-x} + 2 \]
\[c'(x)e^{-x} - c(x)e^{-x} = -c(x)e^{-x} + 2 \]
\[c'(x)e^{-x} = 2 \]
2 EXAM I ANSWERS

\[c'(x) = 2e^x \]
\[c(x) = 2e^x + k. \]

Hence \(y = 2 + ke^{-x}. \)

3. A) Two equilibrium solutions: \(x = 0 \) (unstable) and \(x = 2 \) (stable).
B) If \(x(0) = 1 \) then \(x(t) \neq 0. \) Divide the equation by \(-x^2: \)

\[-x^{-2}\dot{x} = -2/x + 1. \]

If \(u = 1/x \) (Bernoulli substitution) then

\[\dot{u} = -2u + 1 \]
\[u = \frac{1}{2} + ce^{-2t} \]
\[x = \frac{2e^{2t}}{e^{2t} + c} \]
\[x = \frac{2e^{2t}}{e^{2t} + 1}, \] because \(x(0) = 1. \)

4. A) Not exact: \(\frac{\partial}{\partial y} (2y - e^x) = 2 \neq 1 = \frac{\partial}{\partial x} x. \)
B) Integrating factor depending on \(x \) only: \(\mu = x \)
C) Multiply by \(x: (2xy - x^2)dx + x^2dy = 0. \) Look for the potential function \(F(x, y) \) such that \(\frac{\partial}{\partial x} F = 2xy - xe^x \) and \(\frac{\partial}{\partial y} F = x^2. \) Integration gives \(F = x^2y - xe^x + e^x. \) Hence \(x^2y - xe^x + e^x = c \) or \(y = \frac{c + e^x(x-1)}{x^2}, \, x \neq 0. \)