CUSPS AND VERTICAL TANGENTS

Example 1. The function $f(x) = x^{1/3}$ has a vertical tangent at the critical point $x = 0$:

as $x \to 0$, $f'(x) = \frac{1}{3x^{2/3}} \to \infty$.

Example 2. The function $f(x) = x^{2/3}$ has a cusp at the critical point $x = 0$:

as $x \to 0^+$, $f'(x) = \frac{2}{3x^{1/3}} \to +\infty$

and

as $x \to 0^-$, $f'(x) = \frac{2}{3x^{1/3}} \to -\infty$.

Example 3. Verify that the function $f(x) = 3x^{1/3}(x + 2)$ has the following properties.

Defined and continuous for all x.
Roots: $x = 0$, $x = -2$. Intercepts: $(-2, 0), (0, 0)$.
No horizontal or vertical asymptotes.
Tends to $+\infty$ like $y = 3x^{1/3}$ as $x \to \pm \infty$ (curvilinear asymptote at infinity).
Critical points: $x = -\frac{1}{2}$ (stationary), $x = 0$ (infinite slope).
Vertical tangent line at the origin.
Decreasing for $x < -\frac{1}{2}$, increasing for $x > -\frac{1}{2}$.
Absolute minimum at $x = -\frac{1}{2}$.
Concave up for $x < 0$ and for $x > 1$. Concave down for $0 < x < 1$.
Points of inflection: $(0, 0), (1, 9)$.