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Abstract. We present a method for constructing multivariate refinable Hermite interpolants
and their associated subdivision algorithms based on a combination of analytical and numerical
approaches. As the limit of a linear iterative procedure, the critical L2 Sobolev smoothness of a re-
finable Hermite interpolant is given by the spectral radius of a matrix dependent upon the refinement
mask. The design question is, Given certain constraints (support size, symmetry type, refinement
pattern, etc.), how can one choose the refinement mask so that the resulting refinable function has
optimal smoothness? This question naturally gives rise to a spectral radius optimization problem.
In general, the objective function is not convex and may not be differentiable, or even Lipschitz,
at a local minimizer. Nonetheless, a recently developed robust solver for nonsmooth optimization
problems may be applied to find local minimizers of the spectral radius objective function. In fact,
we find that in specific cases that are of particular interest in the present context, the objective
function is smooth at local minimizers and may be accurately minimized by standard techniques.
We present two necessary mathematical tricks that make the method practical: (i) compression of
matrix size based on symmetry and (ii) efficient computation of gradients of the objective function.
We conclude by reporting some computational results.
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1. Introduction to refinable Hermite interpolants. Subdivision algorithms
are iterative methods for producing smooth curves and surfaces with a built-in mul-
tiresolution structure. They are now used rather extensively in computer-aided geo-
metric design. They are also intimately connected to wavelet bases and their associ-
ated fast filter bank algorithms. Formally, a subdivision scheme is given by a linear
operator S := Sa,M of the form

Sv(α) =
∑
β∈Zs

v(β)a(α−Mβ),(1.1)

where a ∈ [l0(Zs)]m×m and M is an isotropic dilation matrix, i.e., an s × s integer
matrix M with the properties that limn→∞M−n = 0 and there exists an invertible
s× s matrix Λ such that

ΛMΛ−1 = diag(σ1, . . . , σs),(1.2)

with |σ1| = · · · = |σs|. Note that S defined by (1.1) can be viewed as an operator on
[l(Zs)]m

′×m for any m′.
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A refinable function vector is a vector of functions (or, more generally, distribu-
tions) φ = [φ1, . . . , φm]

T that satisfies a two-scale refinement equation of the form

φ =
∑
α∈Zs

a(α)φ(M · −α).(1.3)

When m = 1, we refer to the subdivision scheme (resp., refinement equation) as a
scalar scheme (resp., equation). “Vector subdivision scheme” or “vector refinement
equation” then refers to the case m > 1. The connection between subdivision scheme
and refinement function is rather clear in the scalar case: Let δ be the Dirac sequence,
and assume (for simplicity) that InSnδ :=

∑
α(S

nδ)(α)h(Mn · −α) (where h is the
hat function) converges uniformly to a continuous function φ. Then one can verify
that φ satisfies (1.3). The corresponding connection is somewhat more technical
in the general vector case, but for refinable Hermite interpolants considered in this
article, the relevant connection between refinable equation and subdivision algorithm
is described by (1.5) and (1.6).

In this paper, we focus our attention on a specific class of refinement equation
(1.3) with an extra Hermite interpolatory property, although the design principle
ought to be applicable in a more general setting. Thus this paper can be viewed as a
sequel to [HYP02]. This section reviews the materials necessary for what follows.

For refinable Hermite interpolants of order r, the multiplicity is the combinatorial
number m =

(
r+s
r

)
= #Λr, where Λr is the set of all multi-indices ν such that

|ν| :=∑s
i=1 νi ≤ r and all νi, i = 1, . . . , s, are nonnegative integers. We conveniently

index the components of φ by the elements in Λr instead of {1, . . . ,m}. A refinable
Hermite interpolant of order r is then a function vector (φν)ν∈Λr such that

φ ∈ [Cr(Rs)]m and satisfies ∂µφν(α) = δα,0δµ,ν .(1.4)

Such interpolants in the case s = 2 have applications in modeling surfaces of
arbitrary topological type. However, in order to avoid getting into the technical details
of free-form subdivision surfaces, we simply explain their application in the functional
setting: Given a refinable Hermite interpolant φ, one can smoothly interpolate any
prescribed Hermite data {vν(α) : ν ∈ Λr, α ∈ Z} by

Iφv :=
∑
α

∑
ν

vν(α)φν(· − α).(1.5)

Moreover, the function Iφv can be conveniently computed to any desired resolution
by iteratively applying (1.1):

D≤r
n Iφv = Snv ∀n = 0, 1, 2, . . . .(1.6)

Here, the operator D≤r
n reads out all the mixed directional derivatives, in directions

M−nej , j = 1, . . . , s, of its operand of order up to r at the lattice points M−nα,
α ∈ Z

s. More formally, let S(E) := [∂ν(E·)µ](0)/µ! be the matrix that measures
how Hermite data changes under a linear change of variable: g = f(E·) ⇒ ∂≤rg =
∂≤rf(E·)S(E). For smooth f , define ∂≤rf(x) to be the row vector of length #Λr

with entries ∂µf(x), µ ∈ Λr (Λr is ordered lexicographically). Define also D
≤r
n f ∈

[l(Zs)]1×m by D≤r
n f(α) = ∂≤rf(M−nα)S(M−n).

Analysis from [HYP02], based on combining general results on refinement equa-
tions [JJ01, CJR02] and elementary properties of Hermite interpolation, shows that,
for γ > r+ s/2, equations (1.3) and (1.4) have a unique solution in the Sobolev space
[W γ

2 (R
s)]m (⊆ Cr(Rs)) if and only if we have the following conditions:
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(i) The refinement mask a satisfies the Hermite interpolatory condition

a(Mα) = S(M−1) δα,0.(1.7)

(ii) The subdivision operator reproduces Πk−1, i.e.,

Sa,M

(
D≤r

0 p
)
= D≤r

1 p ∀p ∈ Πk−1(1.8)

for some k ≥ �γ� + 1.
(iii) Let an := Sn

a (δIm), where δIm ∈ [l(Zs)]m×m is the matrix sequence which
equals the identity matrix Im at α = 0 and the zero matrix elsewhere; then
an satisfies

max
{
lim
n→∞ ||an ∗ v||

1/n
2 : v ∈ Hk

}
< |det(M)|1/2−γ/s,(1.9)

where Hk := {v ∈ [l0(Zs)]m :
∑

α∈Zs(D
≤r
0 p)(−α)v(α) = 0 ∀p ∈ Πk−1(R

s)}.
(iv) The matrix J := 1

| detM |
∑

α a(α) has 1 as a simple eigenvalue and all the

other eigenvalues have modulus less than |detM |−�γ�/s.
By carefully examining the arguments in the two papers [JJ01, CJR02], one sees that,
in fact, condition (iv) is redundant, i.e., it is implied by (i)–(iii).

In surface modeling applications, we also need symmetry,

a(Eα) = S(M−1EM)a(α)S(E−1) ∀ α ∈ Z
s, ∀E ∈ G,(1.10)

where G is a symmetry group with respect to a dilation matrix M , i.e., G is a finite set
of integer matrices with determinants equal to ±1 and forms a group under matrix
multiplication; moreover, MEM−1 ∈ G for all E ∈ G [Han, HYP02]. Of particular
interest are

• the hexagonal symmetry group (also known as D6) with respect to M = 2I2,

D6 =

{
±
[
1 0
0 1

]
,±

[
0 −1
1 −1

]
,±

[−1 1
−1 0

]
,(1.11)

±
[
0 1
1 0

]
,±

[
1 −1
0 −1

]
,±

[−1 0
−1 1

]}
;

• the square symmetry group (also known as D4) with respect to M = 2I2,

D4 =

{
±
[
1 0
0 1

]
,±

[
0 −1
1 0

]
,±

[
1 0
0 −1

]
,±

[
0 1
1 0

]}
;(1.12)

• D6 with respect to the
√
3-dilation matrix M =M√

3 := [
1
2
−2
−1 ];

• D4 with respect to the quincunx dilation matrix M =MQuincunx := [
1
1

1
−1 ].

The reason why we work with L2 Sobolev spaces is that the left-hand side of
(1.9) equals the spectral radius of a linear operator restricted to a finite-dimensional
invariant subspace. Consider the transition operator Ta : [l(Zs)]m×m → [l(Zs)]m×m:

Tau(α) :=
∑
β,γ

a(Mα− β)u(β + γ)a(γ)∗.(1.13)

For a matrix mask a, we denote supp(a) := {β ∈ Z
s : a(β) �= 0}. Define a set Ka

M by

Ka
M :=

∞∑
j=1

M−j(supp(a)− supp(a)),(1.14)
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where for two sets S1 and S2, S1 − S2 := {s1 − s2 : s1 ∈ S1, s2 ∈ S2}. We define
l(Ka

M ) := {u ∈ l(Zs) : u(β) = 0 ∀β ∈ Z
s\Ka

M}. By results in the general theory of
refinement equations (see, e.g., [Han02, JJ01]), conditions (i) and (ii) above guarantee
that Wk := {w = u ∗ v∗ : u, v ∈ Hk} is an invariant subspace of Ta. Let the set Ka

M

be defined in (1.14). In fact, Wk ∩ [l(Ka
M )]

m×m has finite dimension and we have

max
{
lim

n→∞ ||an ∗ v||
1/n
2 : v ∈ Hk

}
=
√
ρ(Ta|Wk∩[l(Ka

M )]m×m).(1.15)

If the mask a does not reproduce Πk and (1.9) holds for some γ > r + s/2, then the
critical L2 Sobolev smoothness of φ equals

s

2

(
2− log| detM | ρ(Ta|Wk∩[l(Ka

M )]m×m)
)
.(1.16)

2. Accuracy order versus smoothness: A computational design princi-
ple based on spectral radius minimization. The basic theory reviewed in section
1 suggests the following recipe for constructing refinable Hermite interpolants for a
given dilation matrix M and symmetry group G with respect to M :

(I) Pick a finite G-symmetric support of the mask a, i.e., supp(a) ⊆ Z
s such that

α ∈ supp(a) implies Eα ∈ supp(a) for all E ∈ G.
(II) Pick a target polynomial reproduction order k.
(III) Solve the system of linear equations determined by (1.7), (1.8), and (1.10):

• if no solution is found, enlarge supp(a) or reduce k, and return to (III)
• otherwise a = a(t), where t ∈ R

L and L equals the nullity of the linear
system in (III).

(IV) Solve

min
t
ρ(Ta(t)|Wk∩[l(Ka

M )]m×m).(2.1)

Steps (I)–(III) had been used in [HYP02] to construct refinable Hermite inter-
polants with small support. The final optimization step (IV), as we shall see in
section 5, becomes useful when we consider schemes with support of moderate sizes.

It is known to waveleticians that the approximation order and smoothness of a
refinable function have a subtle relationship, except in very special cases (e.g., when
φ is a spline, where the two properties go hand-in-hand [CDR96]). Under certain
conditions, a Ck refinable function vector guarantees to provide approximation order
k+ 1. In the case of refinable Hermite interpolants, the latter condition is equivalent
to (1.8).

In short, smooth refinable functions provide good approximation orders [Ron97];
the converse implication, however, is not true. One consequence is that when one is
interested in optimal smoothness, one should not necessarily optimize approximation
order. (The latter is a general practice in construction of wavelet and related systems,
because approximation orders typically boil down to simple algebraic conditions on
the refinement mask and are easier to work with.) To put it in a different way, within
a certain regime one can trade off some approximation orders for smoothness. The
goal of this article is to discuss how one can capitalize on this observation to construct
smooth refinable Hermite interpolants.

The above computational optimization principle has been used in other settings
by Daubechies and by Dyn et al. In these applications, however, both the spatial
dimension and the multiplicity is 1; the number of parameters is quite small (one or
two), so relatively ad hoc optimization methods suffice. For example, in Daubechies
[Dau93], an easily computable upper bound, rather than the honest Hölder exponent,
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was optimized, and it happened that a smoother wavelet was discovered. For our
multivariate problems with typically at least half a dozen variables, we advocate an
optimization objective based on the L2 Sobolev exponent and a robust solver for
nonsmooth optimization problems.

3. Reducing matrix size using symmetry. In principle, the right-hand side
of (1.15) is just the spectral radius of a finite matrix. Nevertheless it seems computa-
tionally troublesome to explicitly form a matrix representation of Ta|Wk∩[l(Ka

M )]m×m ,
where the set Ka

M is defined in (1.14). Jia and Jiang [JJ01] provide the following

simple formula for computing ρ(Ta|Wk∩[l(Ka
M )]m×m). Let b(α) :=

∑
β a(β) ⊗ a(α +

β)/|det(M)|. Consider the size m2(#Ka
M ) matrix

F := (b(Mα− β))α,β∈Ka
M
.(3.1)

If J :=
∑

α a(α)/|detM | satisfies spec(J) = {η1 = 1, η2, . . . , ηm}, |ηj | < 1 for j > 1,
then

max
{
lim

n→∞ ||an ∗ v||
1/n
2 : v ∈ Hk

}
=
√
ρ(Ta|Wk∩[l(Ka

M )]m×m) =
√
ρk|detM |,(3.2)

where ρk = max{|ν| : ν ∈ spec(F )\Ek}, where
Ek = {ηjσ−µ, ηjσ

−µ : |µ| < k, j = 2, . . . ,m} ∪ {σ−µ : |µ| < 2k}.(3.3)

In fact, if the mask a does not reproduce Πk and the shifts of φ are stable, then by
(1.16) the critical L2 Sobolev smoothness of φa is equal to

−(log| detM | ρk)s/2.(3.4)

Despite the simplicity of Jia and Jiang’s algorithm, the matrix (3.1) is exceedingly
large for the bivariate examples we are interested in in section 5. It had already been
shown in Han [Han01] that, in the scalar case, one can substantially reduce the size
of the matrix by making use of symmetry. We find that the computational savings
are even more significant (see section 5) in the vector case. We shall follow along the
lines developed in [Han01] to generalize the algorithm in the scalar case there to the
vector case.

Let G be a symmetry group with respect to a dilation matrix M . We define the
operators Θ,Θ∗ : [l(Zs)]m×m �→ [l(Zs)]m×m by

Θ(u)(α) :=
1

#G

∑
E∈G

S(E)u(E−1α)S(E)T

and

Θ∗(u)(α) :=
1

#G

∑
E∈G

S(E)Tu(Eα)S(E).

Again the transition operator Ta : [l(Zs)]m×m �→ [l(Zs)]m×m is given by

Tau(α) :=
∑

β,γ∈Zs

a(Mα− β)u(β + γ)a(γ)∗.

Define the convolved subdivision operator Sa : [l(Zs)]m×m �→ [l(Zs)]m×m by

Sau(α) :=
∑

β,γ∈Zs

a(Mβ − α+ γ)∗u(β)a(γ),
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where A∗ denotes the complex conjugate of the transpose of A. Define an inner
product on [l0(Zs)]m×m as follows:

〈u, v〉 := trace

∑

β∈Zs

u(β)v(β)∗


 , [l0(Zs)]m×m.

Proposition 3.1. Let a be a mask satisfying (1.10). Then Θ(Tau) = TaΘ(u) for
all u ∈ l[(Zs)]m×m. Moreover, for any u, v ∈ [l0(Zs)]m×m, we have 〈Tau, v〉 = 〈u,Sav〉
and Θ∗(Sau) = SaΘ∗(u).

Proof. We have

TaΘ(u)(α) =
∑

β,γ∈Zs

a(Mα− β)Θ(u)(β + γ)a(γ)∗

=
1

#G

∑
E∈G

∑
β,γ∈Zs

a(Mα− β)S(E)u(E−1β + E−1γ)S(E)Ta(γ)∗

=
1

#G

∑
E∈G

∑
β,γ∈Zs

S(M−1EM)a(E−1Mα− E−1β)

u(E−1β + E−1γ)a(E−1γ)∗S(M−1EM)T

=
1

#G

∑
E∈G

S(M−1EM)

∑
β,γ∈Zs

a(MM−1E−1Mα− β)u(β + γ)a(γ)∗S(M−1EM)T

=
1

#G

∑
E∈G

S(E)
∑

β,γ∈Zs

a(ME−1α− β)u(β + γ)a(γ)∗S(E)T

=
1

#G

∑
E∈G

S(E)Tau(E−1α)S(E)T

= Θ(Tau).
The other claims can be proved by similar computation.

The following result generalizes the algorithm in [Han01] to the vector case and
is the main result in this section.

Theorem 3.2. Let a be a Hermite interpolatory mask such that (1.8) and (1.10)
are satisfied. Let Ka

M be the set defined in (1.14). Then we have

ρ(Ta|Wk∩[l(Ka
M )]m×m) = ρ(Ta|Θ(Wk∩[l(Ka

M )]m×m)).(3.5)

Moreover,

spec(Ta|Θ(Wk∩[l(Ka
M )]m×m)) = spec(Ta|Θ([l(Ka

M )]m×m))\spec(Sa|Θ∗(Uk)),(3.6)

where the space Uk is defined to be

Uk := span


vD≤r

0 p, [vD≤r
0 p]T ,


∑

µ∈Z
s
+

∑
0≤ν≤µ,ν∈Λr,µ−ν∈Λr

p(µ)(β)Eν,µ−ν




β∈Zs

: v ∈ [C]m×1, p ∈ Πk−1


 ,
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where Eα,β is the #Λr × #Λr matrix with the (α, β) entry equal to 1 and all other
entries equal to 0.

The proof of the above result is largely similar to that given in [Han01] for the
scalar case, with Proposition 3.1 being a key step; we omit the details in this compu-
tational paper.

A finer analysis, based on combining the ideas in [Han01] and [JJ01], shows that
spec(Sa|Θ∗(Uk)) is a subset of |detM |Ek, where the set Ek is defined in (3.3). More
specifically, we can compute spec(Sa|Θ∗(Uk)) by the following simple procedure:

spec(Sa|Θ∗(Uk)) = spec(τM,J |Πk−1,m,Θ∗ ) ∪ spec(τM,J |Πk−1,m,Θ∗ )

∪ spec(τM |Θ∗(Π2k−1\Πk−1))\spec(τM |Θ∗(Πk−1)),
(3.7)

where J :=
∑

β∈Zs a(β)/|detM |, Πk−1,m,Θ∗ = {∑E∈G S(E)
T p(Ex) : p ∈ (Πk−1)

m×1},
and

τM,J(p)(x) := |detM |J∗p(M−1x), p ∈ Πk−1,m,Θ∗ ,

and

τM (p)(x) := |detM |p(M−1x), p ∈ Π2k−1.

In order to compute spec(Sa|Θ∗(Uk)) by the above procedure, we see that the procedure
only depends on J , the dilation matrixM , and the symmetry group G. So, in general,
we need to compute the set spec(Sa|Θ∗(Uk)) only once.

In the particular case G = {Is} (that is, no symmetry is assumed), we have
Πk−1,m,Θ∗ = (Πk−1)

m×1 and Θ∗(Π2k−1) = Π2k−1. By (1.2), M = ΛDΛ−1, where
D = diag(σ1, . . . , σs). A simple argument shows that spec(τM |Π2k−1

) = spec(τD|Π2k−1
)

= {|detM |σ−µ : |µ| < 2k}. On the other hand, one can easily verify that
spec(τM,J |(Πk−1)m×1) = {ηλ : η ∈ spec(J∗), λ ∈ spec(τM |Πk−1

)}
= {|detM |ηjσ−µ : j = 1, . . . , s, |µ| < k}.

Hence, in the special case G = {Is}, we have spec(Sa|Uk
) = |detM |Ek, which recovers

Jia and Jiang’s result in (3.3).
When M = 2Is, one has

spec(Sa|Θ∗(Uk))

= {ηj21−2r with multiplicity mG(2r) : j = 2, . . . ,m; r = 0, . . . , k/2− 1}

∪ {2−2r with multiplicity mG(2r) : r = 0, . . . , k − 1},
(3.8)

where the quantity mG(2r), r ∈ N, is defined in [Han01].
The following procedure tells us how to compute the set Ka

M in (1.14).
Proposition 3.3. Let a be a mask. Let K0 be a finite subset of Z

s such that
Ka

M ⊂ K0 (that is, K0 is a guessing set which is large enough to contain Ka
M ). Define

Kj = Kj−1 ∩M−1(Kj−1 + (supp a− supp a)), j ∈ N.

Then a positive integer j exists such that Kj = Kj−1 and consequently Kj = Ka
M .

Proof. Clearly, Kj ⊂ Kj−1 for all j ∈ N. Since K0 is a finite subset, there must
exist a positive integer j such that Kj−1 = Kj .



650 BIN HAN, MICHAEL L. OVERTON, AND THOMAS P.-Y. YU

By the definition of Ka
M and Ka

M ⊂ K0, by induction, one can easily prove that
Ka

M ⊂ Kj for all j ∈ N. Therefore, Ka
M ⊂ Kj . To complete the proof, one needs to

show that Ka
M ⊃ Kj . By the definitions of Kj and K

a
M , one can deduce that

∩∞
k=jKk ⊂ Ka

M .

Since Kj = Kj+1 = · · · , we deduce that Kj = ∩∞
k=jKk ⊂ Ka

M .
The set Ka

M plays an important role in the analysis of various properties of subdi-
vision schemes. For example, if W is a subspace of [l0(Zs)]m×m and TaW ⊂W , then
it was proved in [HJ98] that spec(Ta|W ) ∪ 0 = spec(Ta|W∩[l(Ka

M )]m×m) ∪ 0. For more
detail and discussion on the set Ka

M and the eigenvalue property of Ta|[l(Ka
M )]m×m , the

reader is referred to Han and Jia [HJ98].
Finally, we point out that a basis for Θ([l(Ka

M )]
m×m) can be easily constructed

using the definition of the operator Θ and the standard basis for [l(Ka
M )]

m×m. Under
such a basis for the space Θ([l(Ka

M )]
m×m), the representation matrix for the transition

operator Ta can be easily obtained and in fact is a “folded version” of the matrix F
in (3.1).

4. Minimization of the spectral radius. In step IV of the algorithm given
in section 2, we need to solve a spectral radius minimization problem. First consider
the general problem of finding minimizers of

f(t) := ρ (A(t)) ,(4.1)

where the n×n matrix A depends smoothly on t ∈ R
L and ρ denotes spectral radius.

The function f is nonconvex, nonsmooth, and, in fact, non-Lipschitz. We cannot ex-
pect to find an efficient algorithm to find global minimizers of f ; indeed, it is known
that related spectral minimization problems are NP-hard [BT97, Nem93]. However,
we may search for local minimizers. A key point is that very often, local minimizers
of spectral functions such as f are points at which the associated matrix has mul-
tiple eigenvalues and the spectral function is not differentiable [BLO01b, BLO01a].
Consequently, standard optimization methods, such as Newton’s method, BFGS, or
conjugate gradient, are not generally effective tools for finding local minimizers of
spectral functions. Other more ad hoc methods, such as the Nelder–Mead simplex
method, are typically very slow and do not produce accurate approximations to local
minimizers. However, a robust minimization method for approximating local mini-
mizers of general nonsmooth functions, specifically including spectral functions, has
been recently developed [BLO02]. We have used this method to find local minimiz-
ers of f , and in our early investigations using somewhat differently defined spectral
radius objective functions we indeed found minimizers at which the objective func-
tion was not smooth. However, for the problems of greatest interest in the present
context, we find local minimizers where f is, in fact, differentiable. Consequently the
minimization is, somewhat to our surprise, amenable to standard techniques such as
BFGS.

In order to apply either the method of [BLO02] or the more standard BFGS
method, we need a formula for the gradient of f where it is defined. Let us consider a
fixed parameter vector t̂ and allow only its jth component to vary, say tj = (̂t)j + s,
where s is a single real parameter. We now consider the variation of the matrix and
its spectral radius as a function of s around 0, say

Ã(s) = A(̂t+ se), f̃(s) = ρ(Ã(s)),(4.2)
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where e is the jth unit vector in R
L. Let λ̂ ∈ C be a given eigenvalue of Ã(0),

and suppose that it is simple, i.e., its algebraic multiplicity is one. Because roots of
polynomials are continuous functions of their coefficients, it is clear that for all δ > 0,
there exists an ε > 0 such that for all |s| < ε, Ã(s) has only one eigenvalue within δ of

λ̂. Let us denote this eigenvalue (which is a function of s and well defined near s = 0)

by λ(s), with λ(0) = λ̂. Since Ã(s) is differentiable, and λ̂ is a simple eigenvalue, it is
known [HJ85, Theorem 6.3.12] that λ is differentiable as a function of s and that its
derivative is given by

λ′(s)|s=0 = u∗
(
Ã′(s)

∣∣∣
s=0

)
v,(4.3)

where v and u, respectively, denote right and left eigenvectors of Ã(0), defined by

Ã(0)v = λ̂v, u∗Ã(0) = λ̂u∗,(4.4)

assuming the normalization u∗v = 1. (We note that u∗v cannot be zero since λ̂ is a
simple eigenvalue; see [HJ85, Lemma 6.3.10].) Since λ is complex-valued, its derivative
is also, but the derivative is with respect to the real parameter s.

Now we turn our attention to variational properties of the spectral radius func-
tion f̃(s) at s = 0. Clearly only the eigenvalues with maximum modulus, which we
denote the active eigenvalues, are relevant. In fact, it is not difficult to see that f̃ is
differentiable at s = 0 if either exactly one real eigenvalue of Ã(0) is active or one
complex conjugate pair of eigenvalues of Ã(0) are active (because Ã(s) is real, its
nonreal eigenvalues must occur in conjugate pairs). In the first case, let us denote the

active real eigenvalue by λ̂, and in the second case, let us denote the active conjugate

pair by (λ̂,
¯̂
λ). Note that λ̂ cannot be zero except in the trivial case n = 1, which we

exclude. With λ̂ defined, the function λ(s) converging to λ̂ is also well defined near
s = 0. Now consider the complex modulus function ω : C → R, defined by ω(z) = |z|.
This function does not have a complex derivative, but if we identify C with R

2 and
consider its real derivative as a function mapping R

2 to R, we find that

ω′(z) =
z

|z|(4.5)

provided z �= 0. (This may be interpreted as a real gradient vector, expressed using
complex notation.) Now we use the ordinary chain rule to combine (4.3) and (4.5)
and obtain

f̃ ′(s)
∣∣∣
s=0

= Re

(
¯̂
λ

|λ̂|u
∗ Ã′(s)

∣∣∣
s=0

v

)
.(4.6)

The complex conjugate arises because the inner product on C used in the chain rule is
defined by 〈y, z〉 = Re(ȳz); alternatively, we may avoid this confusion by carrying out
the chain rule using R

2 instead of C. Notice that, if we replace λ̂ in this derivation
by its conjugate, we must also conjugate the eigenvectors v and u defined in (4.4), so
the result remains unchanged. Also note that the scaling of either u or v is arbitrary,
but once one is determined, the other is also, because of the normalization u∗v = 1.

Consistently normalized eigenvectors corresponding to a simple eigenvalue are
locally continuous functions of the associated matrix, so the directional derivative
(4.6) is locally continuous as t̂ is varied. We therefore conclude that the spectral



652 BIN HAN, MICHAEL L. OVERTON, AND THOMAS P.-Y. YU

radius function f(t) is differentiable at t̂ provided that A(̂t) has exactly one real
active eigenvalue or one complex conjugate pair of active eigenvalues and that its
gradient may be computed from (4.6).

We note in passing that if two or more eigenvalues of A(̂t) with distinct imaginary
part are active, i.e., have modulus equal to the maximum modulus, the spectral radius
function f is typically not differentiable at t̂, but if each of the active eigenvalues
is simple (has multiplicity one), then f may be represented locally near t̂ as the
maximum of two or more smooth functions that coincide at t̂. However, if any active
eigenvalue has multiplicity greater than one, the variational properties of f at t̂ are
considerably more complicated; a detailed analysis is given by Burke and Overton
[BO01].

Finally, we consider the matrix function defined in section 2 whose spectral radius
is to be minimized, i.e., Ta(t)|Wk∩[l(Ka

M )]m×m in (2.1). A key point is that the subspace
Wk is independent of t. Just as there is no need to construct a basis for Wk to
compute the spectral radius of this matrix (see (3.2)), there is no need to construct
a basis to compute its gradient. Since the eigenvalues of Ta(t)|Wk∩[l(Ka

M )]m×m are
precisely the eigenvalues of F (see (3.1)) that are not in the set Ek, we simply compute
the eigenvalues of F , remove those in the set Ek, find the largest in absolute value
that remains, and construct the gradient via (4.6) using the corresponding left and
right eigenvectors of F for u and v and the partial derivative ∂F/∂tj for Ã

′(0) for
j = 1, . . . , L.

The same principle above can be applied when we compress matrix size based on
the formulas (3.5), (3.6), and (3.7).

5. Computational results. It was proved in [Han00] that no C2 interpolating
dyadic refinable function can be supported on [−3, 3]s and no C1 dyadic refinable
function can be supported on [−1, 1]s in any dimension s. We use our computational
optimization approach to explore how much smoothness one can gain by increasing r
from 0 to 1.

We consider here D6-symmetric Hermite interpolatory schemes with the following
(D6-symmetric) supports; the corresponding φ’s are supported on [−3, 3]2.

• Two-Point Scheme. supp(a) = {(0, 0),±(1, 0),±(0, 1),±(1, 1)},
• Diamond Scheme. supp(a) = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(−1, 1),±(2, 1),
±(1, 2)},

• Butterfly Scheme. supp(a) = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(−1, 1),
±(2, 1),±(1, 2), ±(−1, 2), ±(−2, 1),±(1, 3),±(3, 1),±(3, 2),±(2, 3)},

• Ten-Point Scheme. supp(a) = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(−1, 1),
±(2, 1),±(1, 2), ±(−1, 2), ±(−2, 1),±(1, 3),±(3, 1),±(3, 2),±(2, 3),±(0, 3),
±(3, 0),±(3, 3)}.

(For justification of the names of the schemes above, see [Yu01, Figure 1].) One finds
by computation that the numbers of parameters in the refinement mask (= nullity in
the linear systems in step (III) of the procedure in section 2) are given by Table 5.1.

Here we are interested in bivariate interpolatory Hermite subdivision schemes with
r = 1 which produce limit surfaces which are at least twice continuously differentiable.
To guarantee that φ ∈ [C2(R2)]3, it suffices, thanks to a Sobolev embedding theorem,
to construct φ such that φ ∈ [W γ

2 (R
2)]3 and γ > 3. The latter condition implies

that the associated subdivision operator must reproduce Π3. Therefore, we apply our
optimization method to the families Diamond(k = 3), Butterfly(k = 3, 4), and
Ten-Point(k = 3, 4).
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Table 5.1
Number of parameters in the symmetric refinement mask reproducing Πk. The first column

corresponds to refinement masks which satisfy only symmetry but no polynomial reproducibility of
any degree. (n.s. stands for no solution in the associated linear system.)

k 0 1 2 3 4 5 6

Two-Point 5 4 2 1 n.s. n.s. n.s. n.s.
Diamond 10 9 7 5 1 n.s. n.s. n.s.
Butterfly 19 18 16 14 10 7 1 n.s.
Ten-Point 24 23 21 19 15 12 6 3

Diamond(k = 3). We plot the critical L2 Sobolev exponent (1.16) versus the sin-
gle parameter t on which the mask is dependent. In Figure 5.1, we show the objective
function in the regions t ∈ [−0.5, 0.5], t ∈ [−0.05, 0.05], and t ∈ [−0.005, 0.005]; these
plots strongly suggest that the objective function is globally smooth (differentiable at
least) and has a unique maximizer (recall that minimizing the spectral radius (1.16)
is the same as maximizing smoothness) near t = 0. One sees that in this parametric
family, the highest L2 Sobolev smoothness found is less than 2.75, failing to infer the
existence of a C2 scheme.
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Fig. 5.1.

Butterfly(k = 3, 4). For the 10 and 7 parameter families the following masks
occur to give optimal L2 Sobolev smoothness within each family:

a(1, 0) =


 0.4960 −0.8380 0.4190
0.1370 −0.1974 0.1701
0 0 0.1428


 ,

a(1, 2) =


 0.0240 0 −0.2651
−0.0015 −0.0011 −0.0437
−0.0030 0 −0.0885


 ,

a(−1, 2) =

 −0.0100 0.0113 0.0465
0.0095 0.0070 −0.0032
0.0025 0.0071 0.0139


 .

Critical L2 Sobolev exponent = 3.5227.
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a(1, 0) =


 0.5000 −0.8529 0.4265
0.1338 −0.1961 0.1591
0 0 0.1221


 ,

a(1, 2) =


 0.0181 0 −0.2809
−0.0022 0.0016 −0.0458
−0.0044 0 −0.0899


 ,

a(−1, 2) =

 −0.0090 0.0034 0.0428
0.0078 0.0081 −0.0057
0.0022 0.0049 0.0105


 .

Critical L2 Sobolev exponent = 3.4031.

The other entries of the mask are given by symmetry relation (1.10). Notice the
following:

• C2 schemes are found in both families.
• Smoothness/accuracy order trade-off: The smoothest scheme in Butterfly
(k = 3) has accuracy order 4 and is smoother than the smoothest scheme in
Butterfly(k = 4), which has accuracy order 5.

• In this case, |Ka
M | = 109, so a direct use of Jia and Jiang’s algorithm requires

computing the spectrum of matrices of size 109×32 = 981; our method based
on (3.6) reduces the matrix size down to 87.

Ten-Point(k = 4). The smoothest mask found is

a(1, 0) =


 0.4659 −0.9156 0.4578
0.1651 −0.2836 0.2613
0 0 0.2389


 ,

a(1, 2) =


 0.0007 0 −0.1531
0.0007 −0.0387 −0.0064
0.0013 0 −0.0516


 ,

a(−1, 2) =

 −0.0004 0.0382 0.0532
−0.0008 −0.0034 0.0079
−0.0007 0.0062 0.0213


 ,

a(3, 0) =


 0.0341 −0.0421 0.0211
0.0085 −0.0120 0.0087
0 0 0.0054


 .

Critical L2 Sobolev exponent = 4.0321.

This implies the existence of a C3 scheme in the Ten-Point(k = 4) family. In this
case |Ka

M | = 127, so a direct use of Jia and Jiang’s algorithm requires computing the
spectrum of matrices of size 127× 32 = 1143; our method based on (3.6) reduces the
matrix size down to 101.

As far as smoothness is concerned there is now no reason to consider the fam-
ily Ten-Point(k = 3). This is because any scheme in Ten-Point(k = 3) \ Ten-
Point(k = 4), which has accuracy order exactly 4, cannot have a L2 Sobolev smooth-
ness > 4.

Matlab programs for reproducing the results in this section can be obtained by
contacting the authors through email.
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The spectral radius optimization problems we encounter in this paper turn out
to be simpler than one would expect. For one thing, we don’t have trouble finding
apparently global minimizers; the number of local minimizers seems to be small in
all the examples we considered. For each of the problems above, running BFGS
using most of the randomly selected initial guesses arrives at the same—empirically
global—minimizer.

We notice also that, in each of the problems considered in the previous sec-
tion, the objective function is differentiable at the computed minimizer. This follows
from the computational observation that at the minimizer t, the active eigenvalue of
Ta(t)|Wk∩[l(Ka

M )]m×m is simple. This is atypical for spectral-related functions in a sense
made precise in [BLO01a]. For instance, consider the function

(t1, t2) �→ ρ




 1− t1 1 0

t1 1 1
t2 0 1




 .

The global minimizer is (t1, t2) = (0, 0), at which the active eigenvalue 1 is not simple
and the spectral radius function is not differentiable. For such problems, the use of a
robust solver like that in [BLO02] is necessary. For the problems considered here, a
more traditional solver such as BFGS seems to suffice.

It is not clear to us whether the observed smoothness in our objective functions
is a general feature of our problem.

Acknowledgments. We thank Adrian Lewis for a key observation regarding the
gradient computation.
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