Continuity

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 1.5 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Know what it means for a function to be continuous at a specific value and on an interval.
- Find values where a function is not continuous; specifically, you should be able to do this for polynomials, rational functions, exponential and logarithmic functions, and other elementary functions.
- Determine the values for which a piecewise function is discontinuous, if any such values exist.
- Use the Intermediate Value Theorem to show the existence of a solution to an equation.

PRACTICE PROBLEMS:

Use the graph of $f(x)$, shown below, to answer questions 1-3

1. For which values of x is $f(x)$ discontinuous?

 $f(x)$ is discontinuous when $x = 0$, $x = 3$, and $x = 6$.

2. At each point of discontinuity, explain why $f(x)$ is discontinuous.

- At $x = 0$, $f(x)$ is discontinuous because $\lim_{x \to 0} f(x)$ DNE.
- At $x = 3$, $f(x)$ is discontinuous because $\lim_{x \to 3} f(x) \neq f(3)$.
- At $x = 6$, $f(x)$ is discontinuous because $f(6)$ is undefined.

3. Determine whether $f(x)$ is continuous on the given interval. If not, explain why.

 (a) $[-8, -4]$
 Yes

 (b) $[-8, 0]$
 No because $\lim_{x \to 0^-} f(x) \neq f(0)$

 (c) $[-8, 0)$
 Yes

 (d) $[-2, 1]$
 No because $\lim_{x \to 0} f(x)$ DNE

 (e) $(3, 6)$
 Yes

 (f) $[3, 6)$
 No because $\lim_{x \to 3^+} f(x) \neq f(3)$

 (g) $(6, 9]$
 Yes

 (h) $[6, 9]$
 No because $f(6)$ is undefined

4. For each of the following, sketch the graph of a function, $y = f(x)$, which satisfies the given characteristic. (There are many possible answers for each)

 (a) $f(x)$ is continuous everywhere except at $x = 1$.
 Any graph for which either $f(1)$ is undefined or $\lim_{x \to 1} f(x)$ DNE or $\lim_{x \to 1} f(x) \neq f(1)$

 (b) $f(x)$ is continuous everywhere except at $x = -2$ where the $\lim_{x \to -2} f(x) = \lim_{x \to -2^+} f(x)$.
 Any graph for which either $f(-2)$ is undefined or $\lim_{x \to -2} f(x) \neq f(-2)$

 (c) $f(x)$ is continuous everywhere except at $x = 0$, where $f(0) = 2$.
 Any graph for which $\lim_{x \to 0} f(x)$ DNE or $\lim_{x \to 0} f(x) \neq 2$
5. Sketch the graph of a function which satisfies the following criteria:

- The domain of \(f(x) \) is \([1, 3]\)
- \(f(x) \) is continuous on \([1, 2]\) and \((2, 3]\).
- \(f(x) \) is not continuous on \([1, 3]\)

For problems 6-15, determine the value(s) of \(x \) where the given function has a point of discontinuity, if any such values exist.

6. \(f(x) = |x| \)
 \(f(x) \) is always continuous

7. \(f(x) = x^2 - x - 5 \)
 \(f(x) \) is always continuous

8. \(f(x) = \frac{x}{x - 1} \)
 \(f(x) \) has a discontinuity when \(x = 1 \)

9. \(f(x) = \sqrt{x - 1} \)
 \(f(x) \) is always continuous

10. \(f(x) = \frac{x^2 + 3x - 10}{x - 7} \)
 \(f(x) \) has discontinuity when \(x = 7 \)
11. \(f(x) = \frac{x^2 - 4}{x - 2} \)

\(f(x) \) has a discontinuity when \(x = 2 \)

12. \(f(x) = \frac{1}{x^2 - 2} + \frac{x^3 - 1}{2x^2 - 1} \)

\(f(x) \) has a discontinuity when \(x = \sqrt{2}, x = -\sqrt{2}, x = \frac{\sqrt{2}}{2}, \) and \(x = -\frac{\sqrt{2}}{2} \)

13. \(f(x) = \begin{cases}
 x^2 - 1, & \text{if } x < 2 \\
 \frac{3}{x - 1}, & \text{if } x \geq 2
\end{cases} \)

\(f(x) \) is always continuous

14. \(f(x) = \begin{cases}
 5 + \frac{1}{x}, & \text{if } x < -1 \\
 3x^2 + 2x + 3, & \text{if } x > -1
\end{cases} \)

\(f(x) \) has a discontinuity when \(x = -1 \)

15. \(f(x) = \begin{cases}
 x^2 - 3x + 4, & \text{if } x \leq 1 \\
 x^4 - 4x^3 - 2x^2 + 6, & \text{if } x > 1
\end{cases} \)

\(f(x) \) has discontinuity when \(x = 1 \)

16. Find the value(s) of \(k \) such that \(f(x) \) is continuous everywhere:

\[f(x) = \begin{cases}
 x^2 - 7, & \text{if } x \leq 2 \\
 4x^3 - 3kx + 2, & \text{if } x > 2
\end{cases} \]

\[k = \frac{37}{6} \]

17. Find the value(s) of \(k \) and \(m \) such that \(f(x) \) is continuous everywhere:

\[f(x) = \begin{cases}
 2x + 8m, & \text{if } x \leq -2 \\
 mx + k, & \text{if } -2 < x \leq 2 \\
 -3x^2 + 8x - 2k, & \text{if } x > 2
\end{cases} \]

\[m = \frac{1}{2} \text{ and } k = 1 \]
18. **Multiple Choice:** Where is \(f(x) = \frac{\sqrt{x - 2}}{x^2 - x} \) continuous?

(a) \(x \neq 0 \) and \(x \neq 1 \)
(b) \(x \leq 2 \) where \(x \neq 0 \) and \(x \neq 1 \)
(c) \(x \leq 2 \)
(d) \(x \geq 2 \)
(e) \(|x| > 2 \)

19. Consider the following definitions:

- **Definition:** A function \(f(x) \) has a [removable discontinuity](#) at \(x = a \) if \(\lim_{x \to a} f(x) \) exists but \(f(x) \) is not continuous at \(x = a \). This could be because \(f(a) \) is undefined or because \(\lim_{x \to a} f(x) \neq f(a) \).

- **Definition:** A function \(f(x) \) has a [jump discontinuity](#) at \(x = a \) if \(\lim_{x \to a^-} f(x) \) exists and \(\lim_{x \to a^+} f(x) \) exists, but \(\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x) \)

For each of the following, determine the value(s) of \(x \) where the given function has a point of discontinuity. Classify each discontinuity as a removable discontinuity, a jump discontinuity, or neither.

(a) \(f(x) = \frac{x^2 - 4}{x - 2} \)

\(f(x) \) has a removable discontinuity when \(x = 2 \)

(b) \(f(x) = \frac{x - 1}{x - 4} \)

\(f(x) \) has a discontinuity when \(x = 4 \); it is neither a removable discontinuity nor a jump discontinuity.

(c) \(f(x) = \begin{cases} x^2 - 3x + 4, & \text{if } x \leq 1 \\ x^4 - 4x^3 - 2x^2 + 6, & \text{if } x > 1 \end{cases} \)

\(f(x) \) has jump discontinuity when \(x = 1 \)

(d) \(f(x) = \frac{x - 1}{x^2 - 4x + 3} \)

\(f(x) \) has a removable discontinuity when \(x = 1 \). \(f(x) \) has another discontinuity when \(x = 3 \); it is neither a removable discontinuity nor a jump discontinuity.
20. **Multiple Choice:** Consider the function:

\[f(x) = \begin{cases}
 x^2 & \text{if } x < -2 \\
 4 & \text{if } -2 < x \leq 1 \\
 6 - x & \text{if } x > 1
\end{cases} \]

Which of the following statements is true about \(f(x) \)?

(a) \(f(x) \) is continuous everywhere.
(b) If \(f(-2) \) were defined to be 4, then \(f(x) \) would be continuous everywhere.
(c) The only discontinuity of \(f(x) \) occurs when \(x = -2 \).
(d) The only discontinuity of \(f(x) \) occurs when \(x = 1 \).
(e) The only discontinuities of \(f(x) \) occur when \(x = -2 \) and \(x = 1 \).

21. Show that the equation \(x^3 - x^2 + 3x - 1 = 1 \) has at least one solution in \((0, 1)\).

Let \(f(x) = x^3 - x^2 + 3x - 2 \). It suffices to show that there exists a \(c \) in \((0, 1)\) such that \(f(c) = 0 \). Since \(f(x) \) is a polynomial, it is continuous everywhere on \((\infty, \infty)\). Specifically, it is continuous on \([0, 1]\). Since \(f(0) = -2 < 0 \) and \(f(1) = 1 > 0 \), the Intermediate Value Theorem states that there exists some \(c \in (0, 1) \), \(f(c) = 0 \). The result follows.

22. Show that \(f(x) = x^3 - 9x + 5 \) has at least one \(x \)-intercept in \((1, 10)\).

We need to show that there exists at least one solution to \(f(x) = 0 \). Since \(f(x) \) is a polynomial, it is continuous on \([1, 10]\). Notice that \(f(1) = -3 < 0 \) and \(f(10) = 915 > 0 \). Thus, the Intermediate Value Theorem states that there must be a \(c \in (1, 10) \) with \(f(c) = 0 \).

23. Use the intermediate value theorem to show that \(x^3 - 2x^2 - 2x + 1 = 0 \) has at least **TWO** solutions in \([0, 5]\).

We will apply the IVT twice – first on \([0, 1]\) and then on \([1, 5]\). Let \(f(x) = x^3 - 2x^2 - 2x + 1 \). Since \(f(x) \) is a polynomial, it is continuous on \((-\infty, \infty)\). As a result, it is continuous on \([0, 1]\) and \([1, 5]\). Notice that \(f(0) = 1 > 0 \) and \(f(1) = -2 < 0 \). So, the IVT implies that there exists a \(c \) in \((0, 1)\) such that \(f(c) = 0 \). Similarly, notice that \(f(1) = -2 < 0 \) and \(f(5) = 66 > 0 \). So, the IVT implies that there exists a \(d \) in \((1, 5)\) such that \(f(d) = 0 \).