Parametric Equations of Lines

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 11.5 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to find the parametric equations of a line that satisfies certain conditions by finding a point on the line and a vector parallel to the line.
- Know how to determine whether two lines in space are parallel, skew, or intersecting. And, if the lines intersect, be able to determine the point of intersection.
- Know how to determine where a line intersects a surface.

PRACTICE PROBLEMS:

For problems 1-4, compute parametric equations of the line which satisfies the given conditions.

1. The line which passes through the point $(1, 0, -1)$ and is parallel to $\mathbf{v} = (1, -2, 0)$.

2. The line which passes through points $A(3, -6, 6)$ and $B(2, 0, 7)$.

3. The line which passes through the point $(-1, 2, 4)$ and is parallel to $L_1 = \begin{cases} x = 3 - 4t \\ y = 3 + 2t \\ z = t \end{cases}$

4. The line which passes through the point $(-2, 1, 4)$ and is parallel to both the xy-plane and the xz-plane.

5. Is the line which passes through points $A_1(1, 2, 3)$ and $B_1(5, 8, 9)$ parallel to the line which passes through points $A_2(-2, 5, 3)$ and $B_2(4, 14, 12)$?

6. Find the coordinates of the point at which the line $L_1 = \begin{cases} x = 3 - 6t \\ y = 3 + 3t \\ z = t \end{cases}$ intersects the given plane:

 (a) The xy-plane.
 (b) The xz-plane.
 (c) The yz-plane.
7. Find the coordinates of the points in 3-space where the line \(L_1 = \begin{cases} x = t \\ y = 1 + t \\ z = 1 - t \end{cases} \) intersects the sphere \(x^2 + y^2 + z^2 = 29 \).

For problems 8-11, determine whether the given lines intersect, are parallel, or are skew. If the lines intersect, find the point of intersection.

8. \(L_1 : x = 2 + 3t, y = 1 - 2t, z = 4 + 5t \)
\(L_2 : x = 3 - 6t, y = -2 + 4t, z = -1 - 10t \)

9. \(L_1 : x = 1, y = t, z = 2 - t \)
\(L_2 : x = 2 + 3t, y = 4 - 3t, z = t \)

10. \(L_1 : x = 1 - 2t, y = 14 + t, z = 5 - t \)
\(L_2 : x = t, y = 4 + 3t, z = 3 + t \)

11. \(L_1 : x = 2 + 5t, y = 4 - t, z = t + 1 \)
\(L_2 : x = 3 + 6t, y = 1 - t, z = t \)

12. Verify that the following lines are parallel. Then compute the distance between them.
(Hint: See HW 11.3 #10 or 11.4 #6.)
\(L_1 : x = 5 + 3t, y = 3 + 9t, z = 0 \)
\(L_2 : x = 1 + t, y = 3t, z = 1 \)

13. Two bugs are walking along lines in 3-space. At time \(t \), bug 1’s position is the point \((x, y, z)\) on the line \(L_1 = \begin{cases} x = 1 + 2t \\ y = 3 + 5t \\ z = 5 + 2t \end{cases} \) and bug 2’s position is the point \((x, y, z)\) on the line \(L_2 = \begin{cases} x = t \\ y = 11 - t \\ z = 4 + t \end{cases} \)

(a) Compute the distance between the bugs’ initial positions.

(b) At which point in space will the bugs’ paths intersect? (Note: the paths may not intersect at the same moment in time.)

14. Consider the point \(P(5, 3, 0) \) and the line \(L \) which contains points \(A(1, 0, 1) \) and \(B(2, 3, 1) \). This problem will show you another way to find the distance \(d \) between the point \(P \) and the line \(L \).

(a) Compute an equation of line \(L \).
(b) Compute a function $f(t)$ which gives the distance from the point P to an arbitrary point on the line.

(c) The distance from the point P to line L is the shortest distance. Calculate the value of t which minimizes the distance from the point P to line L; that is, calculate the value of t which minimizes $f(t)$ from part (b).

(d) Compute the distance from the point $P(5,3,0)$ to line L by calculating the distance from this P to the point on your the line which corresponds to your value of t from part (c). Verify your answer with HW 11.3 #10(b).