Planes

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 11.6 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

• Be able to find the equation of a plane that satisfies certain conditions by finding a point on the plane and a vector normal to the plane.

• Know how to find the parametric equations of the line of intersection of two (non-parallel) planes.

• Be able to find the (acute) angle of intersection between two planes.

PRACTICE PROBLEMS:

1. For each of the following, find an equation of the plane indicated in the figure.

 (a) \(6x + 4y + 3z = 12\); (b) \(3x + 2y = 6\)

For problems 2-6, determine whether the following are parallel, perpendicular, or neither.

2. Plane \(P_1 : 5x - 3y + 4z = -1\) and plane \(P_2 : 2x - 2y - 4z = 9\)

 The planes are perpendicular.
3. Plane \(P_1 : 3x - 2y + z = -3 \) and plane \(P_2 : 5x + y - 6z = 8 \)

The planes are neither parallel nor perpendicular; Detailed Solution: Here

4. Plane \(P_1 : 3x - 2y + z = -3 \) and plane \(P_2 : -6x + 4y - 2z = 1 \)

The planes are parallel.

5. Plane \(P : 5x - 3y + 4z = -1 \) and line \(\vec{\ell}(t) = (2 + 2t, 3 - 2t, 5 - 4t) \)

The plane and the line are parallel.

6. Plane \(P : 5x - 3y + 4z = -1 \) and line \(\vec{\ell}(t) = \left< 2 + \frac{5}{2}t, 3 - \frac{3}{2}t, 5 + 2t \right> \)

The plane and the line are perpendicular.

7. Give an example of a plane, \(P \), and a line, \(L \), which are neither parallel nor perpendicular to each other.

Suppose your line has the form \(\vec{\ell}(t) = \vec{\ell}_0 + t \vec{v} \) and that your plane has \(\vec{n} \) as a normal vector. Then all possible answers are those for which \(\vec{v} \parallel \vec{n} \) (i.e., \(\vec{v} = c\vec{n} \) for any scalar \(c \)) and \(\vec{v} \not\perp \vec{n} \) (i.e., \(\vec{v} \cdot \vec{n} \neq 0 \)). The first condition ensures that \(L \) and \(P \) are not perpendicular; the second condition ensures that \(L \) and \(P \) are not parallel.

For problems 8-13, find an equation of the plane which satisfies the given conditions.

8. The plane which passes through the point \(P(1, 2, 3) \) and which has a normal vector of \(\vec{n} = 4\vec{i} - 2\vec{j} + 6\vec{k} \).

\[4(x - 1) - 2(y - 2) + 6(z - 3) = 0 \]

9. The plane which passes through \(P(-2, 0, 1) \) and is perpendicular to the line \(\vec{\ell}(t) = (1, 2, 3) + t(3, -2, 2) \).

\[3(x + 2) - 2y + 2(z - 1) = 0 \]

10. The plane which passes through points \(A(1, 2, 3), B(2, -1, 5) \) and \(C(-1, 3, 3) \).

\[-2(x - 1) - 4(y - 2) - 5(z - 3) = 0 \]

11. The plane which passes through \(A(1, 2, 3) \) and is parallel to the plane \(3x - 5y + z = 2 \).

\[3(x - 1) - 5(y - 2) + 1(z - 3) = 0 \]

12. The plane which passes through \(A(-2, 1, 5) \) and is perpendicular to the line of intersection of \(P_1 : 3x + 2y - z = 5 \) and \(P_2 : -y + z = 7 \).

\[1(x + 2) - 3(y - 1) - 3(z - 5) = 0 \]; Detailed Solution: Here
13. The plane which contains the point \(A(-2, -1, 3) \) and which contains the line \(L : x = 1 + t, y = 3 - 2t, z = 4t \).
\[
2(x + 2) - 3(y + 1) - 2(z - 3) = 0
\]

14. Consider the planes \(P_1 : x + y + z = 7 \) and \(P_2 : 2x + 4z = 6 \).

(a) Compute an equation of the line of intersection of \(P_1 \) and \(P_2 \).
One parametric equation of the line of intersection is \(L : x = 3 - 2t, y = 4 + t, z = t \)

(b) Compute an equation of the plane which passes through the point \(A(1, 2, 3) \) and contains the line of intersection of \(P_1 \) and \(P_2 \).
\[
5(x - 1) + 4(y - 2) + 6(z - 3) = 0
\]

15. Find the acute angle of intersection of \(P_1 : 3x - 2y + 5z = 0 \) and \(P_2 : -x - y + 2z = 3 \).
\[
\cos^{-1}\left(\frac{9}{\sqrt{38}\sqrt{6}} \right)
\]

16. Find the acute angle of intersection of \(P_1 : 3x - 2y - 5z = 0 \) and \(P_2 : -x - y + 2z = 3 \).
\[
\pi - \cos^{-1}\left(\frac{-11}{\sqrt{38}\sqrt{6}} \right); \text{ Detailed Solution: Here}
\]

17. Consider the plane which passes through the point \(Q \) and whose normal vectors are parallel to \(n \). And, let \(P \) be another point in space, as illustrated below.

(a) Show that the distance between the point \(P \) and the given plane is \(d = \frac{|QP \cdot n|}{\|n\|} \).
\[
d = \|\text{Proj}_n QP\| = \| \left(\frac{QP \cdot n}{\|n\|^2} \right) n \| = \frac{|QP \cdot n|}{\|n\|^2} \|n\| = \frac{|QP \cdot n|}{\|n\|}
\]
(b) Use this method to compute the distance between the point \(P(2, -1, 4) \) and the plane \(x + 2y + 3z = 5 \).

\[
d = \frac{7}{\sqrt{14}}
\]

18. Consider planes \(P_1 : 2x - 4y + 5z = -2 \) and \(P_2 : x - 2y + \frac{5}{2}z = 5 \).

(a) Verify that \(P_1 \) and \(P_2 \) are parallel.

\[\mathbf{n}_1 = \langle 2, -4, 5 \rangle \text{ is normal to plane } P_1.\]

\[\mathbf{n}_2 = \langle 1, -2, \frac{5}{2} \rangle \text{ is normal to plane } P_2.\]

Since \(\mathbf{n}_1 = 2\mathbf{n}_2 \), we have that \(\mathbf{n}_1 \) and \(\mathbf{n}_2 \) are parallel. And, because these normal vectors are parallel, the planes \(P_1 \) and \(P_2 \) are parallel, too.

(b) Compute the distance between \(P_1 \) and \(P_2 \). (Hint: See the previous problem.)

\[
d = \frac{12}{\sqrt{45}}; \text{ Detailed Solution: Here}\]