Multivariable Functions

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 13.1 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to describe and sketch the domain of a function of two or more variables.
- Know how to evaluate a function of two or more variables.
- Be able to compute and sketch level curves & surfaces.

PRACTICE PROBLEMS:

1. For each of the following functions, describe the domain in words. Whenever possible, draw a sketch of the domain as well.

 (a) \(f(x, y) = \sqrt{10 - x^2 - y^2} \)
 (b) \(f(x, y) = \arcsin (2x + y) \)
 (c) \(f(x, y, z) = \ln (36 - 4x^2 - 9y^2 - 36z^2) \)
 (d) \(f(x, y, z) = \sqrt{6 - 2x - 3y - z} \)

2. Let \(f(x, y) = 2xe^{3y} \). Compute the following.

 (a) \(f(4, 0) \)
 (b) \(f(1, \ln 2) \)

3. Suppose \(f(x, y) = \int_x^y (t^2 - 1) \, dt \). Compute the following.

 (a) \(f(-1, 2) \)
 (b) \(f(0, 2) \)

4. Suppose \(f(x_1, x_2, \ldots, x_n) = x_1 + 2x_2 + 3x_3 + \cdots + nx_n \). Determine \(f(1, 1, \ldots, 1) \).

5. Consider \(f(x, y) = x^2 + y^2 \). Compute \(f(x(t), y(t)) \) if \(x(t) = 1 + t \) and \(y(t) = 2 - 3t \)
6. Sketch the level curves $f(x, y) = k$, for the specified values of k.

 (a) $z = 2x - y; k = -2, -1, 0, 1, 2$
 (b) $z = y^2 - x^2; k = -2, -1, 0, 1, 2$

7. **Multiple Choice:** Which of the following graphs is the level curve of $f(x, y) = x^2 + 4y^2$ which passes through $P(-2, 0)$?

 (a)
 (b)
 (c)
 (d)
 (e)
8. Suppose \(f(x, y, z) = x^2 + y^2 - z^2 \). For each of the following, sketch the level surface \(f(x, y, z) = k \) corresponding to the indicated value of \(k \).

(a) \(k = 1 \)

(b) \(k = 0 \)

(c) \(k = -1 \)

9. Consider the contour map shown below.

(a) If a person were walking straight from point \(A \) to point \(B \), would s/he be walking uphill or downhill?

(b) Is the slope steeper at point \(B \) or point \(C \)?

(c) Starting at \(C \) and moving so that \(x \) remains constant and \(y \) decreases, will the elevation begin to increase or decrease?

(d) Starting at \(B \) and moving so that \(y \) remains constant and \(x \) increases, will the elevation begin to increase or decrease?
10. **Matching:** Each of the following contour plots were drawn on the window $[-3, 3] \times [-3, 3]$ in the xy-plane. Points with larger z-values are shaded in blue. Those with smaller z-values are shaded in red. Match each contour map (a-f) to an appropriate graph (I-VI).
11. **Multiple Choice:** Which of the following is a sketch of the domain of \(f(x, y) = \ln(xy - 1) + e^{x^2y} - y^8 \)?

- [] (a)
- [] (b)
- [] (c)
- [] (d)
- [] (e)

12. Suppose that \(f(x, y) = x^2 + y^2 \). And, consider line \(L \) with parametric equations:
\[
x(t) = \frac{\sqrt{2}}{2} t, \quad y(t) = \frac{\sqrt{2}}{2} t, \quad z(t) = 0.
\]

Notice that this line in the \(xy \)-plane is parallel to the unit vector \(\vec{u} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right) \).

(a) Now consider the image below. The red curve along \(f(x, y) \) is the curve that results from evaluating the function at points along \(L \). In other words, it is \(f(x(t), y(t)) \), where \(x(t) \) and \(y(t) \) are taken from the parametric equations of \(L \). Compute \(f(x(t), y(t)) \).
(b) Notice that your answer from part (a) is a single variable function of the variable t. Call it $g(t)$. Compute $\frac{d}{dt}(g(t))\bigg|_{t=1}$ and interpret your answer geometrically.