The Gradient & Directional Derivatives

SUGGESTED REFERENCE MATERIAL:
As you work through the problems listed below, you should reference Chapter 13.6 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

- Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction.

- Be able to use the fact that the gradient of a function $f(x, y)$ is perpendicular (normal) to the level curves $f(x, y) = k$ and that it points in the direction in which $f(x, y)$ is increasing most rapidly.

PRACTICE PROBLEMS:

For problems 1-3, compute the directional derivative of f at the point P in the direction of \vec{v}.

1. $f(x, y) = x^4 - y^4$; $P(0, -2)$; $\vec{v} = \frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2}j$

 $\frac{32}{\sqrt{2}}$

2. $f(x, y) = y \sin x$; $P\left(\frac{\pi}{2}, 1\right)$; $\vec{v} = \langle 1, -1 \rangle$

 $\frac{-1}{\sqrt{2}}$

3. $f(x, y, z) = e^x \cos (yz)$ at $P = (1, \pi, 0)$, $\vec{v} = -2i + j - 3k$

 $\frac{-2e}{\sqrt{14}}$

4. Find the directional derivative of $g(x, y, z) = z \ln (x + y)$ at $P(0, 1, -2)$ in the direction from P to $Q(1, 3, 2)$.

 $\frac{-6}{\sqrt{21}}$; Detailed Solution: [Here]
5. Find the directional derivative of \(f(x, y) = \frac{y^2}{x+y} \) at the point \((-1, -1)\) in the direction of a vector which makes a counterclockwise angle \(\theta = \frac{\pi}{4} \) with the positive \(x \)-axis.

\[\frac{\sqrt{2}}{4} \]

6. Suppose \(f(x, y) = \tan (xy) \). Find a unit vector \(\mathbf{u} \) such that \(D_u f(1, \pi) = 0 \).

\[\mathbf{u} = \left\langle \frac{1}{\sqrt{\pi^2 + 1}}, -\frac{\pi}{\sqrt{\pi^2 + 1}} \right\rangle \text{ or } \mathbf{u} = \left\langle -\frac{1}{\sqrt{\pi^2 + 1}}, \frac{\pi}{\sqrt{\pi^2 + 1}} \right\rangle \]

7. Suppose that \(f(x, y, z) \) is a differentiable function. Let \(f_x(1, 1, 2) = 5, f_y(1, 1, 2) = -1, \) and \(f_z(1, 1, 2) = 0 \). What is the directional derivative of \(f(x, y, z) \) at \((1, 1, 2)\) in the direction of \(\mathbf{a} = \langle -3, 0, 4 \rangle \)?

\(-3 \)

8. Suppose \(D_u f(3, -2) = 1 \) and \(D_v f(3, -2) = 2 \) where \(\mathbf{u} = \frac{4}{5} \mathbf{i} + \frac{3}{5} \mathbf{j} \) and \(\mathbf{v} = -\frac{4}{5} \mathbf{i} + \frac{3}{5} \mathbf{j} \). Compute \(f_x(3, -2) \) and \(f_y(3, -2) \).

\(f_x(3, -2) = -\frac{5}{8}; f_y(3, -2) = \frac{5}{2} \)

For problems 9-11, find the gradient of \(f \) at the given point.

9. \(f(x, y) = 3xy - y^2x^3 \) at \((1, -1)\)

\[\nabla f(1, -1) = -6 \mathbf{i} + 5 \mathbf{j} \]

10. \(f(x, y) = \cos (2x - y^2) \) at \((\pi/4, 0)\)

\[\nabla f \left(\frac{\pi}{4}, 0 \right) = \langle -2, 0 \rangle \]

11. \(f(x, y, z) = 4xyz - y^2z^3 + 4z^3y \) at \((2, 3, 1)\)

\[\nabla f(2, 3, 1) = 12 \mathbf{i} + 6 \mathbf{j} + 33 \mathbf{k} \]

12. For each of the following, determine the maximum value of the directional derivative at the given point as well as a unit vector in the direction in which the maximum value occurs.

(a) \(g(x, y) = e^{xy}; \) \(P(1, 3) \)

The maximum value of the directional derivative of \(g \) at \(P \) is \(e^9 \sqrt{117} \) which occurs in the direction of \(\mathbf{u} = \left\langle \frac{9}{\sqrt{117}}, \frac{6}{\sqrt{117}} \right\rangle \).
(b) \(w = \sqrt{4 - x^2 - y^2 - z^2}; \ P(1, -1, 0) \)

The maximum value of the directional derivative of \(w \) at \(P \) is 1 which occurs in the direction of \(\mathbf{u} = \left\langle -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right\rangle \).

13. The temperature at the point \((x, y, z)\) in a room is \(T(x, y, z) = \frac{xz}{x^2 + y^2} \). Find the direction in which the temperature increases most rapidly at the point \((-3, 4, 1)\).

\[
\frac{7}{625} \mathbf{i} + \frac{24}{625} \mathbf{j} - \frac{3}{25} \mathbf{k}
\]

14. Compute a unit vector in the direction in which \(f(x, y, z) = x^3yz^2 \) decreases most rapidly at \(P(2, -1, 1) \); and, find the rate of change of \(f \) at \(P \) in that direction.

The direction in which \(f \) decreases most rapidly is \(\mathbf{u} = \left\langle \frac{3}{\sqrt{29}}, -\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}} \right\rangle \). And, the rate of change in this direction is \(-4\sqrt{29}\). Detailed Solution: [Here]

For problems 15-16, sketch the level curve of \(f(x, y) \) which passes through the given point \(P \). Then draw the gradient of \(f \) at \(P \) on the same axes.

15. \(f(x, y) = 20 - 5x + y; \ P = (3, 5) \)

Point \(P \) is on the level curve \(f(x, y) = 10 \), i.e., \(y = 5x - 10 \); \(\nabla f(3, 5) = \langle -5, 1 \rangle \).
16. \(f(x, y) = x^2 + y^2; \ P \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) \)

Point \(P \) is on the level curve \(f(x, y) = 1 \), i.e., \(x^2 + y^2 = 1 \); \(\nabla f \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right) = \left(\sqrt{2}, \sqrt{2} \right) \).

17. The graph shown below depicts some level curves of an unspecified function \(f(x, y) \).

Which of the vectors is most likely to be \(\nabla f \) at \(P \)? Explain your reasoning.

\(\vec{d} \). \(\nabla f(P) \) should point in the direction of greatest increase and it should be normal to point \(P \) on the level curve of \(f(x, y) \).