defn: An ordinary differential equation (ODE) is an equation that includes the derivative of some unknown function.

defn: The order of an ODE is the highest ordered derivative in the eqn.

ex. \[\frac{dy}{dx} = x \sqrt{x^2+4} \quad \text{1st order ODE} \]

\[xy' = (1-x)y \quad \text{1st order ODE} \]

\[\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - 8y = 0 \quad \text{2nd order ODE} \]

defn: The solution to an ODE is a function that satisfies the eqn.

ex. Verify \(y = e^{-x} \) is a solution to \(y'' + 2y' + y = 0 \)

sln:

\[y = e^{-x} \]

\[y' = -e^{-x} \]

\[y'' = e^{-x} \]

\[y'' + 2y' + y = e^{-x} + 2(-e^{-x}) + e^{-x} = 0 \]

\[\therefore y = e^{-x} \text{ is a soln.} \]

exercise: Verify that \(y = Ae^{2x} + Be^{-4x} \) is a solution to \(\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - 8y = 0. \)
Solving ODEs

I. FIRST ORDER SEPERABLE EQUAS

\(F_{x,y} \) \(\frac{dy}{dx} = g(x) \)

- We “separate” the variables to the differential form:

\(h(y) \frac{dy}{dx} = g(x) dx \)

- Integrate both sides (LHS with respect to \(y \) and RHS with respect to \(x \))

\[\int h(y) dy = \int g(x) dx \]

- This gives us

\[H(y) = G(x) + C \]

which is an implicit solution to the ODE.

- If possible we should solve for \(y \) explicitly as a function of \(x \).

ex: solve \(\frac{dy}{dx} = 2(1+y^2)x \)

Note \(1+y^2 \neq 0 \) \(\implies \) it is OK to divide!

Thus

\[\frac{1}{1+y^2} \frac{dy}{dx} = 2x \]

\[\frac{1}{1+y^2} \, dy = 2x \, dx \]

\[\int \frac{1}{1+y^2} \, dy = \int 2x \, dx \]

\[\tan^{-1} y = x^2 + C \]

\[y = \tan (x^2 + C) \]

arrowed Implicit Solution

arrowed Explicit Solution
CHECK: \(y = \tan(x^2 + c) \)
\[\Rightarrow \frac{dy}{dx} = \sec^2(x^2 + c) \cdot (2x) \]

LHS: \(\frac{dy}{dx} = 2x \cdot \sec^2(x^2 + c) \) \text{ from above} \]

RHS: \(2(1 + y^2) \cdot x = 2(1 + \tan^2(x^2 + c)) \cdot x \]
\[= 2(\sec^2(x^2 + c)) \cdot x \]
\[= 2x \cdot \sec^2(x^2 + c) \]

LHS = RHS \Rightarrow y = \tan(x^2 + c) \text{ is a solution!} \]

ex solve \((4y - \cos y) \frac{dy}{dx} = 3x^2 \)
\[\Rightarrow (4y - \cos y) \, dy = 3x^2 \, dx \]
\[\Rightarrow \int (4y - \cos y) \, dy = \int 3x^2 \, dx \]
\[2y^2 - \sin y = x^3 + C \] \rightleftharpoons \text{Implicit solution}

Note: This time we can't solve for \(y \) explicitly

ex solve \(\frac{dy}{dx} = -xy \)

Case 1: if \(y \neq 0 \):
\[\frac{1}{y} \frac{dy}{dx} = -x \]
\[\frac{1}{y} \, dy = -x \, dx \]
\[\int \frac{1}{y} \, dy = \int -x \, dx \]
\[\ln |y| = - \frac{1}{2} x^2 + C \] \rightleftharpoons \text{Implicit solution}

\[y = e^{-\frac{1}{2} x^2 + C} \]
\[|y| = e^{-\frac{1}{2} x^2 + C} \] \text{ Positive Constant}
\[y' = e^x e^{-\frac{1}{2}x^2} \]
\[y = \pm e^x e^{-\frac{1}{2}x^2} \]
\[y = Ke^{-\frac{1}{2}x^2} \quad (x \neq 0) \]

\[y = Ke^{-\frac{1}{2}x^2} \quad \text{explicit solution.} \]

CASE 2: \(y = 0 \)

Then \(\frac{dy}{dx} = 0 \)

So \(\frac{dy}{dx} = -xy \) becomes \(0 = 0 \) \(\checkmark \)

i.e., \(y = 0 \) is a solution.

Thus, the solution to the differential equation is
\[y = Ke^{-\frac{1}{2}x^2} \quad \text{and} \quad y = 0 \quad (x \neq 0) \]

Or, if we allow \(k = 0 \) then these can be combined to
\[y = Ke^{-\frac{1}{2}x^2} \]

ex: solve \(y' + y^2 \sin x = 0 \)

solve:
\[\frac{dy}{dx} + y^2 \sin x = 0 \]
\[\frac{dy}{dx} = -y^2 \sin x \]

CASE 1: if \(y \neq 0 \)
\[\frac{1}{y^2} \frac{dy}{dx} = -\sin x \]
\[\frac{1}{y^2} dy = -\sin x \, dx \]
\[\int \frac{1}{y^2} dy = \int -\sin x \, dx \]
\[-\frac{1}{y} = \cos x + C\]
\[
y = \frac{-1}{\cos x + C} \leftarrow \text{Explicit soln}
\]

Case 2: If \(y = 0 \)
Then \(\frac{dy}{dx} = 0 \) too

So
\[
\frac{dy}{dx} + y^2 \sin x = 0 \quad \text{becomes} \quad 0 + 0 = 0 \quad \bigcirc
\]
\[
\Rightarrow \quad y = 0 \quad \text{is also a soln}
\]

Thus, the soln is
\[
y = \frac{-1}{\cos x + C} \quad \text{and} \quad y = 0
\]

Note, we can't merge the solns this time.

If Integral Curves
Suppose you're given the differential eqn
\[
\frac{dy}{dx} = 2x.
\]

When solved, the solutions are a family of functions of the form \(y = x^2 + C \)

Below are the "integral curves" with \(C = -2, -1, 0, 1, 2 \)
Notice that if you're given an initial condition such as \(y(0) = 0 \), at most one integral curve will satisfy both the differential eqn and the integral curve.

\[
\begin{align*}
\frac{dy}{dx} &= 2x \\ y(0) &= 0
\end{align*}
\]

Initial Value Problem

General Solution: \(y = x^2 + C \)

But \(y(0) = 0 \) \(\Rightarrow \) \(0 = C + 0 \) \(\Rightarrow \) \(C = -1 \)

Particular Soln: \(y = x^2 - 1 \)

Exercise: Solve the IVP given by

\[
\begin{align*}
\frac{dy}{dx} &= x\sqrt{x^2 + 4} \\ y(-4) &= 0
\end{align*}
\]

III. Applications and Modeling

1. Find the curve in the xy-plane which passes thru \((0, 2)\) and whose tangent line at any point \((x, y)\) has slope \(\frac{x}{y} \)

Solu:

- Let \(y(x) \) be the curve in the xy-plane.
- Then \(\frac{dy}{dx} = \frac{x}{y} \) because the derivative at \((x, y)\) gives the slope of the tangent line at that point.
- Also since the curve passes thru \((0, 2)\) we have an initial condition \(y(0) = 2 \)
\[\Rightarrow \text{ IUP } \quad \begin{cases} \frac{dy}{dx} = \frac{x}{y^4} \\ y(0) = 2 \end{cases} \]

So
\[\frac{dy}{dx} = \frac{x}{y^4} \Rightarrow y^4 \, dy = x \, dx \]

\[\frac{y^5}{5} = \frac{x^2}{2} + C \]

General solution

\[y = \left(\frac{5}{2} x^2 + D \right)^{\frac{1}{5}} \]

But \(y(0) = 2 \Rightarrow 2 = \left(\frac{5}{2} (0)^2 + D \right)^{\frac{1}{5}} \]

\[\Rightarrow 2 = D^{\frac{1}{5}} \]

\[\Rightarrow D = 32 \]

\[\therefore y = \left(\frac{5}{2} x^2 + 32 \right)^{\frac{1}{5}} \]

Particular Solution

2. Exponential Growth Model

- models simple population growth where the rate of growth is proportional to the size of the population.
- The larger the population, the faster it grows.

Let \(y = y(t) \) be the population at time \(t \),
\[y(0) = y_0 \] be the initial population.

Then
\[\begin{cases} \frac{dy}{dt} = ky, \quad k > 0 \\ y(0) = y_0 \end{cases} \]

- \(k \) is the constant of proportionality called the growth constant.
- We'll solve this IUP by separation of variables
\[\frac{dy}{dt} = ky \]
\[
\frac{dy}{dt} = ky \\
\int \frac{dy}{y} = \int k dt \\
\ln|y| = kt + C \\
\ln y = kt + C
\]

Since \(y > 0 \), don’t need abs. value.

\[
y = e^{kt+C} \quad \text{constant}
\]

\[
y = e^{kt} e^C
\]

\[
y = Ce^{kt} \quad \text{General Solution}
\]

But \(y(0) = y_0 \Rightarrow y_0 = Ce^0 \)

\[
\therefore C = y_0
\]

Thus, the particular solution to the IVP is

\[
y(t) = y_0 e^{kt}
\]

ex: An E.coli cell divides into 2 cells every 20 minutes. Let \(y = y(t) \) be the number of cells after \(t \) minutes.

a) Find a formula for \(y(t) \).

\[
y(t) = y_0 e^{kt} \quad \text{by law of exponential growth}
\]

\[
y(0) = 1 \quad \text{by we assume that we start with one cell.}
\]

Thus \(y(t) = e^{kt} \)

To solve for \(k \), we use the fact that \(y(20) = 2 \)

\[
2 = e^{20k}
\]

\[
\ln 2 = 20k
\]

\[
k = \frac{\ln 2}{20}
\]
\[y(t) = e^{\frac{\ln 2}{20} t} = e^{\left(\frac{\ln 2}{20}\right) \frac{120}{60}} = e^{\frac{\ln 2}{2}} \]

\[y(120) = 64 \text{ cells} \]

(b) How many cells will there be after 2 hours?

Warning: \(t \) is in minutes!

2 hours = 120 minutes

\[y(120) = 2^{\frac{120}{60}} = 2^6 = 64 \text{ cells} \]

(c) How long before there are 1,000,000 cells?

\[1,000,000 = 2^{\frac{t}{20}} \]

\[\ln(1,000,000) = \ln 2^{\frac{t}{20}} = \frac{t}{20} \ln 2 \]

\[t = 20 \ln \left(\frac{1,000,000}{2}\right) \approx 399 \text{ minutes} \]

(3) Logistic Model

- A more realistic population model where the population eventually levels off to a carrying capacity \(L \) of the system.

\[
\begin{align*}
\frac{dy}{dt} &= k \left(1 - \frac{y}{L}\right)y, \quad k > 0 \\
y(0) &= y_0
\end{align*}
\]

Note: If \(\frac{y}{L} \) is small, then \(\frac{dy}{dt} \approx ky \)
and the population grows like the exponential growth model.
If \(y = L \), then \(\frac{dy}{dt} = 0 \)

If \(y > L \), then \(\frac{dy}{dt} < 0 \)
(The population has grown too large.
(And thus decreases)

Exercise: Solve the IVP

Hint: use partial fractions

Solution:

\[
Y(t) = \frac{y_0 L}{y_0 + (L - y_0)e^{-kt}}
\]

Note: as \(t \to \infty \), \(y(t) \to L \)

4. **Exponential Decay Model**

- Rate of decay is proportional to the amount of substance present.
- \(y = y(t) = \text{amount of substance remaining at time } t \)
- \(y(0) = y_0 = \text{initial amount of substance} \)

\[
\begin{align*}
\frac{dy}{dt} &= -Ky, \quad K > 0 \\
y(0) &= y_0
\end{align*}
\]

Exercise: Show that the solution to this model is:

\[
Y(t) = y_0 e^{-kt}
\]

Ex: How long before half of the original substance remains?

If half remains, then \(y = \frac{1}{2} y_0 \)

Thus \(y = y_0 e^{-kt} \) becomes:
\[\frac{1}{2}y_0 = y_0 e^{-kt} \]
\[\frac{1}{2} = e^{-kt} \]
\[\ln \left(\frac{1}{2} \right) = \ln (e^{-kt}) \]
\[\ln \left(\frac{1}{2} \right) = -kt \]
\[t = -\frac{1}{k} \ln \left(\frac{1}{2} \right) = \frac{\ln \left(\frac{1}{2} \right)}{k} = \frac{\ln 2}{k} \]

Thus, the \(\frac{1}{2} \) life is given by

\[t = \frac{\ln 2}{k} \]

Note: this does not depend on \(y_0 \)!

Exercise: Prove that in the exponential growth model, \(t = \frac{\ln 2}{k} \) is the amount of time it takes for the population to double. This is called the doubling time of the population.

Exercise: Suppose 30% of a radioactive substance decays in 5 years. Find the half-life of the substance.

Note:

Given 30% decays, \(70\% \) remains

\[y = y_0 e^{-kt} \]
where \(y(5) = 0.7y_0 \).

So, we can solve for the decay constant \(k \).

\[0.7y_0 = y_0 e^{-5k} \]
\[0.7 = e^{-5k} \]
\[\ln(0.7) = \ln(e^{-5k}) \]
\[\ln(0.7) = -5k \]
\[k = \frac{\ln(0.7)}{-5} \]

Thus, the half-life is \(t = \frac{\ln 2}{k} = \frac{\ln 2}{\ln(0.7)/-5} \approx 9.7 \text{ yrs} \)
Given the half life of carbon-14 is 5730 years, find the decay constant.

\[t_{\text{half}} = \frac{\ln 2}{k} \implies k = \frac{\ln 2}{t_{\text{half}}} \]

\[\therefore k = \frac{\ln 2}{5730} \approx 0.000121 \]

Ex (Shroud of Turin)

When tested in 1988, fibers in the cloth contained 93% of the original carbon 14. Determine the year of origin of the cloth.

\[y = y_0 e^{-kt} \implies y = y_0 e^{-0.000121 t} \]

To find the time corresponding to 1988 when 93% remains, we set \(\frac{y}{y_0} = 0.93 \)

Thus \(\frac{y}{y_0} = e^{-0.000121 t} \)

\[0.93 = e^{-0.000121 t} \]

\[\therefore t = -\frac{\ln(0.93)}{0.000121} \approx 600 \text{ years} \]

So, the year of origin is approximately 1988 - 600 = 1388

6 Newton’s Law of Cooling

Fact: The rate at which the temp of a cooling object decreases is proportional to the difference between the temp of the object and the temp of the surrounding environment.
The same is true for the rate at which a warming object increases.

Let $T(t) = \text{temp of obj at time } t$.
$T(0) = T_0 = \text{initial temp of object}$
$T_e = \text{constant temp of surrounding environment}$

Then
\[\begin{cases} \frac{dT}{dt} = k(T - T_e), & k < 0 \\ T(0) = T_0 \end{cases} \]

Note: when an obj cools off $T > T_e \iff k < 0$

else $\frac{dT}{dt} > 0$

when an obj warms up $T_e > T \iff k < 0$

else $\frac{dT}{dt} < 0$

Alternatively
\[\begin{cases} \frac{dT}{dt} = k(T_e - T), & k > 0 \\ T(0) = T_0 \end{cases} \]

Solve: $T(t) = T_e + (T_0 - T_e)e^{kt}$ $(k < 0)$

or

$T(t) = T_e + (T_0 - T_e)e^{-kt}$ $(k > 0)$