(1) Find the directional derivative of \(f \) at the point \(P \) in the direction of the vector \(\mathbf{a} \) where

(a) \(f(x, y) = e^x \cos y; \ P(0, \pi/4); \ \mathbf{a} = -3\mathbf{i} + 3\mathbf{j} \),
(b) \(f(x, y, z) = x^3z - yx^2 + z^2; \ P(2, -1, 1); \) and \(\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} \).

Comments: (a) \(\nabla f = (e^x \cos y, -e^x \sin y) \) so \(\nabla f(0, \pi/4) = (\sqrt{2}/2, -\sqrt{2}/2) \). Then the directional derivative at the point \(P \) is

\[
(D_{\mathbf{a}} f)(0, \pi/4) = \nabla f \cdot \frac{\mathbf{a}}{||\mathbf{a}||} = (\sqrt{2}/2, -\sqrt{2}/2) \cdot \frac{(-1, 1)}{\sqrt{2}} = -1.
\]

(b) We find that \(\nabla f = (3x^2z - xy, -x^2, x^3 + 2z) \) so \(\nabla f(P) = (14, -4, 10) \). Also \(||\mathbf{a}|| = \sqrt{14} \). Then the directional derivative is given by

\[
(D_{\mathbf{a}} f)(P) = (14, -4, 10) \cdot \frac{(3, -1, 2)}{\sqrt{14}} = 38/\sqrt{14}.
\]

(2) Find the directional derivative of \(f(x, y) = x/(x+y) \) at \(P(1, 0) \) in the direction of the point \(Q(-1, -1) \).

Comments: \(\nabla f = \left(\frac{y}{(x+y)^2}, -\frac{x}{(x+y)^2} \right) \) so \(\nabla f(1, 0) = (0, -1) \). The vector \(\mathbf{a} = \overrightarrow{PQ} = (-2, -1) \) so

\[
(D_{\mathbf{a}} f)(1, 0) = (0, -1) \cdot \frac{-2, -1}{\sqrt{5}} = 1/\sqrt{5}.
\]

(3) Sketch the level curve of \(f(x, y) = x^2 + 4y^2 \) that passes through the point \(P(-2, 0) \) and draw the gradient vector at \(P \).

Comments: The level curve through \(P(-2, 0) \) is the ellipse \(x^2 + 4y^2 = 4 \) or \((x/2)^2 + y^2 = 1\).

(4) Find a unit vector in the direction in which \(f \) increases most rapidly at the point \(P \), and find the rate of change of \(f \) at \(P \) in that direction.

(a) \(f(x, y) = 3x - \ln y; \ P(-1, 1) \). (b) \(f(x, y) = x/(x+y); \ P(0, 2) \).

Comments: The direction is the direction of the gradient \(\nabla f \) and the maximal rate of change is \(||\nabla f|| \).

(a) \(\nabla f = (3, -1/y) \) so \(\nabla f(-1, 1) = (3, -1) \) and \(||\nabla f|| = \sqrt{10} \).

(b) \(\nabla f = \left(\frac{y}{(x+y)^2}, -\frac{x}{(x+y)^2} \right) \) so \(\nabla f(0, 2) = (1/2, 0) \) with \(||\nabla f|| = 1/2 \).

(5) Let \(z = 3x^2 - y^2 \). Find all points at which \(||\nabla z|| = 6 \).

Comments: \(\nabla f = (6x, -2y) \) so \(||\nabla f|| = \sqrt{36x^2 + 4y^2} = 6 \) or \(36x^2 + 4y^2 = 36 \). The standard form for this ellipse is \(x^2 + y^2/9 = 1 \).

(6) Given that the directional derivative of \(f(x, y, z) \) at the point \(P(3, -2, 1) \) in the direction of the vector \(\mathbf{a} = 2\mathbf{i} - \mathbf{j} - 2\mathbf{k} \) is \(-5\) and that \(||\nabla f(3, -2, 1)|| = 5 \), find \(\nabla f(3, -2, 1) \).

Comments: We know that \((D_{\mathbf{a}} f)(P) = \nabla f(P) \cdot \frac{\mathbf{a}}{||\mathbf{a}||} = -5 \). Since \(||\nabla f(3, -2, 1)|| = 5 \), we know that the minimal rate of change of \(f \) occurs in the direction of \(\mathbf{a} \) which is the direction of \(-\nabla f\). So \(\nabla f(P) = -5\mathbf{a}/||\mathbf{a}|| \).
(7) Consider the ellipsoid \(x^2 + y^2 + 4z^2 = 12. \) Find an equation of the tangent to the ellipsoid at the point \(P(2, 2, 1). \) Find parametric equations for its normal line at this point.

Comments: Let \(F(x, y, z) = x^2 + y^2 + 4z^2 = 12 \) so \(\nabla F = (2x, 2y, 8z) \). At the point \(P(2, 2, 1), \nabla F = (4, 4, 8) \). So \(\mathbf{N} = (1, 1, 2) \) is normal to the ellipsoid. Then the tangent plane is given by \((x-2) + (y-2) + 2(z-1) = 0 \) and normal line \(x = 2 + t, y = 2 + t, z = 1 + 2t. \)

(8) Find all points on the ellipsoid \(2x^2 + 3y^2 + 4z^2 = 9 \) at which the plane tangent to the ellipsoid is parallel to the plane \(x - 2y + 3z = 5. \)

Comments: Recall that two planes are parallel if and only if their normal vectors are multiples of each other. The normal to \(x - 2y + 3z = 5 \) is \(\mathbf{N} = (1, -2, 3). \) The normal vectors to a level surface \(F(x, y, z) = \) constant are given by the gradient \(\nabla F: \)

\[\nabla F = \nabla(2x^2 + 3y^2 + 4z^2) = (4x, 6y, 8z). \]

We have the equation \(c\mathbf{N} = \nabla F \) or equivalently

\[c(1, -2, 3) = (2x, 3y, 4z) \]

This single vector equation gives rise to 3 equations:

\(c = 2x, \quad -2c = 3y, \quad 3c = 4z; \)

that is,

\(x = c/2, \quad y = -2c/3, \quad z = 3c/4. \)

We substitute these equations back into the equation of the ellipsoid

\[2(c/2)^2 + 3(-2c/3)^2 + 4(3c/4)^2 = 9 \]

which reduces to \((2/4 + 3 \cdot 4/9 + 9/4)c^2 = 9 \) or \(49c^2/12 = 9; \) that is, \(49c^2 = 108. \) Hence \(c = \pm 6\sqrt{3}/7. \)

We conclude that there are two points are the ellipsoid:

\(x = 3\sqrt{3}/7, \quad y = -4\sqrt{3}/7, \quad z = 9\sqrt{3}/14, \)

\(x = -3\sqrt{3}/7, \quad y = 4\sqrt{3}/7, \quad z = -9\sqrt{3}/14. \)

(9) Find all points on the surface \(x^2 + y^2 - z^2 = 1 \) at which the normal line is parallel to the line through \(P(1, -2, 1) \) and \(Q(4, 0, -1). \)

Comments: We want to find the normal line parallel to \(\overrightarrow{PQ} = \langle 3, 2, -2 \rangle. \) Let \(F(x, y, z) = x^2 + y^2 - z^2 \)
so \(\nabla F = \langle 2x, 2y, -2z \rangle. \) We require that \(\langle x, y, -z \rangle = c \langle 3, 2, -2 \rangle \) that gives the equations

\(x = 3c, \quad y = 2c, \quad -z = -2c; \)

We substitute these equations back into the equation for the hyperboloid to get

\((3c)^2 + (2c)^2 - (2c)^2 = 1 \)

which reduces to \(9c^2 = 1 \) so \(c = \pm 1/3. \) Hence we get two points: \((1, 2/3, 2/3)\) and \((-1, -2/3, -2/3).\)

(10) Find parametric equations for the tangent line to the curve of intersection of the paraboloid \(z = x^2 + y^2 \) and the ellipsoid \(x^2 + 4y^2 + z^2 = 9 \) at the point \(P(1, -1, 2). \)

Comments: A tangent vector to the curve of intersection is given by \(\mathbf{N}_1 \times \mathbf{N}_2 \) where \(\mathbf{N}_1 \) is normal to the graph of \(z = x^2 + y^2 \) at the point \(P \) and \(\mathbf{N}_2 \) is normal to the level surface \(F(x, y, z) = x^2 + 4y^2 + z^2 = 9 \) at the point \(P. \)

Now \(\mathbf{N}_1 = \langle -2x, -2y, 1 \rangle. \) At the point \(P, \mathbf{N}_1 = \langle -2, 2, 1 \rangle. \) The vector \(\mathbf{N}_2 = \nabla F = \langle 2x, 8y, 2z \rangle \).

At \(P, \mathbf{N}_2 = \langle 2, -8, 4 \rangle. \) We rescale and set \(\mathbf{N}_2 = \langle 1, -4, 2 \rangle. \)

We compute \(\mathbf{N}_1 \times \mathbf{N}_2 = \langle 8, 5, 6 \rangle \) which is tangent to the curve of intersection at the point \(P. \)

Hence the tangent line is given by \(x = 1 + 8t, y = -1 + 5t, z = 2 + 6t. \)

Max-Min Problems

(1) Find all critical points of \(f(x, y) = 4xy - x^4 - y^4 \) and classify them according to relative maxima, minima, and saddle points.

Comments: The partial derivatives of \(f(x, y) \) are

\[\frac{\partial f}{\partial x} = 4y - 4x^3 = 0, \quad \frac{\partial f}{\partial y} = 4x - 4y^3 = 0. \]
Hence \(y - x^3 = 0 \) and \(x - y^3 = 0 \). So \(y = x^3 \). Substituting back, we get \(x - x^9 = 0 \) or \(x(1 - x^8) = 0 \). Hence \(x = 0 \) or \(x = \pm 1 \). The corresponding \(y \) values are \(y = 0 \), \(y = 1 \), and \(y = -1 \); that is, the critical points are

\[(0,0), \quad (1,1), \quad (-1,-1).\]

The second order partial derivatives are

\[
\frac{\partial^2 f}{\partial x^2} = -12x^2, \quad \frac{\partial^2 f}{\partial y^2} = -12y^2, \quad \frac{\partial^2 f}{\partial x \partial y} = 4.
\]

The resulting \(2 \times 2 \) determinant is

\[D = \begin{vmatrix} -12x^2 & 4 \\ 4 & -12y^2 \end{vmatrix} = 144x^2y^2 - 16.
\]

At \((0,0)\), \(D = -16 \) so \((0,0)\) is a saddle point; at \((1,1)\), \(D = 144 - 16 > 0 \). Since \(f_{xx}(1,1) = -12 < 0 \), \((1,1)\) is a relative maximum; at \((-1,-1)\), \(D \) is again positive and \(f_{xx}(-1,-1) \) is negative, so \((-1,-1)\) is a relative maximum.

(2) Find all critical points of \(f(x,y) = x^5 + y^5 - 5xy \). Classify them as a relative maximum, relative minimum, or saddle point.

Comments: We proceed as in the above problem. We find that \(f_x = 5x^4 - 5y = 0 \) so \(y = x^4 \) and \(f_y = 5y^4 - 5x = 0 \) so \(x = y^4 \). Combining, we now have \(x = (x^4)^4 = x^{16} \) so \(x^{16} - x = 0 \). Factoring, we obtain \(x(x^{15} - 1) = 0 \) with solutions \(x = 0 \) and \(x = 1 \) with the corresponding values of \(y \) as \(y = 0 \) and \(y = 1 \). In other words, the critical points are \((0,0)\) and \((1,1)\). Next, we compute the second order partials:

\[
f_{xx} = 20x^3, \quad f_{yy} = 20y^3, \quad f_{xy} = -5.
\]

Then the \(2 \times 2 \) determinant \(D \) is

\[D = \begin{vmatrix} 20x^3 & -5 \\ -5 & 20y^3 \end{vmatrix} = 400x^3y^3 - 25.
\]

At \((0,0)\), \(D = -25 < 0 \) so \((0,0)\) is a saddle point.

at \((1,1)\), \(D = 400 - 25 > 0 \) and \(f_{xx}(1,1) > 0 \) so \((1,1)\) is a relative minimum.

(3) Find all points \((x,y,z)\) on the surface \(z^2 - xy = 5 \) that are closest to the origin.

Comments: We need to minimize the distance from a point on the surface to the point \((0,0,0)\); that is, \(\sqrt{x^2 + y^2 + z^2} \). Almost always, it is easier to minimize the distance squared: \(x^2 + y^2 + z^2 \). Since \(z^2 = 5 + xy \) on the surface, this becomes

\[f(x,y) = x^2 + y^2 + xy.
\]

We need to find the critical points of \(f \):

\[
\frac{\partial f}{\partial x} = 2x + y = 0, \quad \frac{\partial f}{\partial y} = 2y + x = 0.
\]

We obtain the linear system: \(2x + y = 0\) and \(x + 2y = 0\) which has the only solution \((0,0)\) which is the critical point of \(f \). Further, the second order partial derivatives of \(f \) are

\[
f_{xx} = 2, \quad f_{yy} = 2, \quad f_{xy} = 1.
\]

Hence,

\[D = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3.
\]

Since \(f_{xx} > 0 \), \((0,0)\) is a minimum. Since \(z^2 = 5 + xy = 5 \), the corresponding \(z \)-values are \(\pm \sqrt{5} \). So there are two points on the surface at minimum distance \((0,0,\pm \sqrt{5}) \).

(4) Find the absolute extrema of \(z = f(x,y) = x^2 + y^2 \) on the domain \(D \) bounded by the ellipse \(x^2/4 + y^2/9 = 1 \).

Comments: This is a two-part problem. First, we need to find all the relative extrema inside the ellipse; then, second, we need to check the boundary ellipse itself for extrema.

The critical points of \(f(x,y) = x^2 + y^2 \) are given by \(f_x = 2x = 0 \) and \(f_y = 2y = 0 \). So there is only one critical point \((0,0)\) with \(f(0,0) = 0 \). Note that \(D = 4 \) and \(f_{xx} = 2 \) so it is a minimum and
not a saddle point.
On the boundary ellipse, \(x = 2 \cos t, y = 3 \sin t \) with \(0 \leq t \leq 2\pi \). Then \(z = (2 \cos t)^2 + (3 \sin t)^2 = 4 \cos^2 t + 9 \sin^2 t \). We need to find its absolute extrema. Now
\[
\frac{dz}{dt} = 10 \cos t \sin t,
\]
so its critical points are \(0, \pi/2, \pi, 3\pi/2 \). But \(z = z(t) = z(0) = 4, z(\pi/2) = 9, z(\pi) = 4, \) and \(z(3\pi/2) = 9 \). Hence, the absolute maximum of \(f \) on \(D \) is 9 while the absolute minimum of \(f \) on \(D \) is 0.

(5) A rectangular box without a lid is made from 12 square meters of cardboard. Find the maximum volume such a box.

Comments: Denote the length, width, and height of the box by \(x, y, \) and \(z \), respectively. So its volume is \(V = xyz \). We can solve for \(z \) in terms of \(x, y \) since its surface area is 12; that is, \(2xz + 2yz + xy = 12 \) shows \(z = (12 - xy)/[2(x + y)] \). Hence,
\[
V = V(x, y) = xy \frac{12 - xy}{2(x + y)} = \frac{12xy - x^2y^2}{2(x + y)}.
\]
We now find its critical points where both partial derivatives are zero:
\[
\frac{\partial V}{\partial x} = 1/2 \frac{y^2 (12 - x^2 - 2xy)}{(x + y)^2}, \quad \frac{\partial V}{\partial y} = 1/2 \frac{x^2 (12 - x^2 - 2xy)}{(x + y)^2}.
\]
These derivative are both zero if \(x = y = 0 \). This solution is not physical. So, we examine the two equations:
\[
12 - x^2 - 2xy = 0, \quad 12 - y^2 - 2xy = 0.
\]
Hence, \(x^2 = y^2 \) or \(x = y \) since \(x, y \geq 0 \). Substitute this condition in \(12 - x^2 - 2xy = 0 \) to obtain \(12 - 3x^2 \) so \(x = 2 \). Similarly, \(y = 2 \). Then \(z = (12 - xy)/[2(x + y)] = 1 \). We conclude that the maximal volume \(V(x, y) = xyz = 4 \).

(6) Find the absolute maximum and minimum values of the function \(f(x, y) = x^2 - 2xy + 2y \) on the rectangle \(D = \{ (x, y) : 0 \leq x \leq 3, 0 \leq y \leq 2 \} \).

Comments: Since \(D \) is a closed and bounded set, the function \(f \) will have absolute extrema. First we find the critical points where both partial derivatives are zero:
\[
\frac{\partial f}{\partial x} = 2x - 2y = 0, \quad \frac{\partial f}{\partial y} = -2x + 2 = 0.
\]
There is only one critical point \((1, 1)\) and the value of \(f \) there is \(f(1, 1) = 1 \).

Next we need to find the extrema on each of the boundary lines, say \(L_1, L_2, L_3, \) and \(L_4 \) where \(L_1 \) is on the \(x \)-axis \((y = 0)\) with \(0 \leq x \leq 3 \); \(L_2 \), the vertical line \(x = 3 \), with \(0 \leq y \leq 2 \); the horizontal line \(L_3 \), with \(y = 2 \) and \(0 \leq x \leq 3 \); and \(L_4 \), the vertical line \(x = 0 \) and \(0 \leq y \leq 2 \).

On \(L_1 \), \(f(x, 0) = x^2 \). This function is increasing. Its minimum value is \(f(0, 0) = 0 \) and maximum value is \(f(3, 0) = 9 \).

On \(L_2 \), \(f(3, y) = 9 - 4y \). This function is decreasing. Its maximum value is \(f(3, 0) = 9 \) and minimum value is \(f(3, 2) = 1 \).

On \(L_3 \), \(f(x, 2) = x^2 - 4x + 4 = (x - 2)^2 \). Its minimum value is \(f(2, 2) = 0 \) and maximum value is \(f(0, 4) = 4 \) since \(0 \leq x \leq 3 \).

On \(L_4 \), \(f(0, y) = 2y \). Its maximum value is \(f(0, 2) = 4 \) and minimum value is \(f(0, 0) = 0 \).

Conclude: on the edges, the minimum value of \(f \) is 0 while its maximum value is 9.

Since the value of \(f \) at the interior critical point is 1, the absolute extrema occur on the boundary.