1. Find the matrix of rotation by an angle of 60° in the counterclockwise direction.

2. Interpret the transformation $T(x) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} x$ geometrically.

3. The matrix $\begin{bmatrix} -0.8 & -0.6 \\ 0.6 & -0.8 \end{bmatrix}$ represents a rotation. Find the angle of rotation in radians.

4. Find the matrix of the orthogonal projection onto the line in \mathbb{R}^3 parallel to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

5. Find the matrix of reflection about the line $x_1 = x_2$ in \mathbb{R}^2.

6. Let A be a reflection matrix and x a vector in \mathbb{R}^2. Set $v = x + Ax$ and $w = x - Ax$. Express $A(Ax)$ in terms of x. Express Av in terms of v. Express Aw in terms of w. What is the angle between v and w? How does v relate to the line of reflection?

7. Find the matrix of the orthogonal projection onto the line in \mathbb{R}^3 containing the unit vector $u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$.

What is the sum of diagonal entries of the matrix?

8. Find the matrix of each of the following linear transformations of \mathbb{R}^3: (a) the orthogonal projection onto the x_1, x_2-plane (b) the reflection about the x_1, x_3-plane (c) the rotation about the x_3-axis through an angle of $\pi/2$, counterclockwise as viewed from the positive x_3-axis (d) the rotation about the x_2-axis through an angle of θ, counterclockwise as viewed from the positive x_2-axis (e) the reflection about the plane $x_2 = x_3$.

9. Find the inverse of the matrix $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$. Interpret your answer geometrically.

10. Find the matrix of each of the following linear transformations of \mathbb{R}^2: (a) scaling that transforms $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$ into $\begin{bmatrix} 8 \\ -4 \end{bmatrix}$ (b) orthogonal projection that transforms $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ (c) the rotation that transforms $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$ into $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ (d) the shear that transforms $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ into $\begin{bmatrix} 7 \\ 3 \end{bmatrix}$ (e) the reflection that transforms $\begin{bmatrix} 7 \\ -5 \end{bmatrix}$ into $\begin{bmatrix} -5 \\ 5 \end{bmatrix}$.
1. Suppose a line L through the origin (in \mathbb{R}^2) makes an angle of θ radians with the x-axis. Write the matrix of the reflection about L in terms of θ. Express your answer in a good form.

2. \[
\begin{bmatrix}
0.6 & 0.8 \\
0.8 & -0.6
\end{bmatrix}
\]
is a matrix of reflection about what line?

3. Find a nonzero 2×2 matrix A such that Ax is parallel to $\begin{bmatrix}1 \\ 2\end{bmatrix}$, for all $x = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}$.

4. Find a nonzero 3×3 matrix A such that Ax is perpendicular to $\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}$, for all $x = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}$.

5. One of the five matrices below represents an orthogonal projection onto a line and another represents a reflection about a line. Identify both and justify your choice.

\[
\begin{bmatrix}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 2
\end{bmatrix}, \quad
\begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{bmatrix}, \quad
\begin{bmatrix}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{bmatrix}
\]

6. Let P and Q be two perpendicular lines in the plane. Given $x = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}$, what is the vector sum of orthogonal projections of x onto P and onto Q?

7. Let P and Q be two perpendicular lines in the plane. Given $x = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}$, what is the relationship between the reflections of x about P and about Q?

8. Let P and Q be two lines through the origin in \mathbb{R}^2, forming an angle of 30°. Let $T(x)$ be obtained by reflecting x about P and then reflecting the result about Q. What is the angle between x and $T(x)$? Find the matrix of T and identify T geometrically.