Generators of quantum Markov Semigroups

Matt Ziemke

University of South Carolina

Virginia Operator Theory and Complex Analysis Meeting (VOTCAM)
November 7th, 2015
1. Definitions
2. Background
3. Known Results
4. Some Results
5. Examples
The σ-weak topology

Let \mathcal{A} be a von Neumann algebra. Then \mathcal{A} has a predual \mathcal{A}^* and the σ-weak topology on \mathcal{A} is the $\sigma(\mathcal{A}, \mathcal{A}^*)$ topology, that is, the weak* topology when \mathcal{A} is viewed as the dual of \mathcal{A}^*.

Note 1: Every von Neumann algebra (when viewed as a Banach space) has a predual (Sakai).

Note 2: We are mostly interested in the case when $\mathcal{A} = \mathcal{B}(\mathcal{H})$, where \mathcal{H} is a separable Hilbert space. In this case $\mathcal{B}(\mathcal{H})^* = S_1(\mathcal{H})$.
Completely positive operators

Let \mathcal{H} be a Hilbert space and let $T : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ be a bounded linear operator. Let $\mathcal{B}(\mathcal{H}) \otimes M_n$ be the $*$-algebra of $n \times n$ matrices with coefficients in $\mathcal{B}(\mathcal{H})$. We say the operator T is **completely positive** if for any $n \in \mathbb{N}$, any positive element $[A_{ij}]_{1 \leq i, j \leq n} \in \mathcal{B}(\mathcal{H}) \otimes M_n$, and any $h_1, h_2, \ldots, h_n \in \mathcal{H}$ we have

$$\sum_{i,j=1}^{n} \langle h_i, T(A_{ij})h_j \rangle \geq 0.$$
Quantum dynamical semigroup

Let \mathcal{A} be a von Neumann algebra. A **quantum dynamical semigroup (QDS)** is a one-parameter family $(T_t)_{t \geq 0}$ of σ-weakly continuous, completely positive, linear operators on \mathcal{A} such that

(i) $T_0 = 1$

(ii) $T_{t+s} = T_t T_s$

(iii) for a fixed $A \in \mathcal{A}$, the map $t \mapsto T_t(A)$ is σ-weakly continuous.

Further, if $T_t(1) = 1$ for all $t \geq 0$ then we say the quantum dynamical semigroup is **Markovian** or we simply refer to it as a **quantum Markov semigroup (QMS)**. If the map $t \mapsto T_t$ is norm continuous then we say the semigroup is **uniformly continuous**.
Generator of a QMS

Given a QDS \((T_t)_{t \geq 0}\), we say that an element \(A \in \mathfrak{A}\) belongs to the domain of the infinitesimal generator \(L\) of \((T_t)_{t \geq 0}\), denoted by \(D(L)\), if

\[
\lim_{t \to 0} \frac{1}{t} (T_tA - A)
\]

converges in the \(\sigma\)-weak topology and, in this case, define the **infinitesimal generator** to be the generally unbounded operator \(L\) such that

\[
L(A) = \sigma\text{-weak-} \lim_{t \to 0} \frac{1}{t} (T_tA - A) , \quad A \in D(L).
\]

If \((T_t)_{t \geq 0}\) is uniformly continuous then the generator \(L\) is bounded and given by

\[
L = \lim_{t \to 0} \frac{1}{t} (T_t - 1)
\]

where the limit is taken in the norm topology. In this case \(T_t = e^{tL}\).
Lindblad (’76)

If \((T_t)_{t \geq 0}\) is a uniformly continuous QMS on \(\mathcal{B}(\mathcal{H})\) then there exists \(G \in \mathcal{B}(\mathcal{H})\) and a completely positive map \(\phi : \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})\) such that the infinitesimal generator \(L\) of \((T_t)_{t \geq 0}\) is given by

\[
L(A) = \phi(A) + GA + AG^*
\]

for all \(A \in \mathcal{B}(\mathcal{H})\).

Note 1: Lindblad proved this for a uniformly continuous QMS on a hyperfinite factor \(\mathcal{A}\) of \(\mathcal{B}(\mathcal{H})\) (which includes the case \(\mathcal{A} = \mathcal{B}(\mathcal{H})\) by Topping (’71)).

Note 2: Christensen and Evans proved this for uniformly continuous QMS on arbitrary von Neumann algebras in ‘79.
Stinespring (‘55)

Let \mathcal{B} be a C^*-subalgebra of the algebra of all bounded operators on a Hilbert space \mathcal{H} and let \mathcal{A} be a C^*-algebra with unit. A linear map $T : \mathcal{A} \rightarrow \mathcal{B}$ is completely positive if and only if it has the form

$$T(A) = V^* \pi(A) V$$

where (π, \mathcal{K}) is a unital $*$-representation of \mathcal{A} on some Hilbert space \mathcal{K}, and V is a bounded operator from \mathcal{H} to \mathcal{K}.

Matt Ziemke
Generators of QMS
Let L be the generator of a uniformly continuous QMS on $B(\mathcal{H})$. Then there exists an operator $G \in B(\mathcal{H})$, a unital \ast-representation of $B(\mathcal{H})$ on some Hilbert space \mathcal{K}, and a $V \in B(\mathcal{K}, \mathcal{H})$ such that

$$L(A) = V^* \pi(A) V + GA + AG^*$$

for all $A \in B(\mathcal{H})$.

Note: Due to a result of Kraus ('70), there exists a sequence $(V_j)_{j \geq 1} \subseteq B(\mathcal{K}, \mathcal{H})$ such that

$$V^* \pi(A) V = \sum_{j=1}^{\infty} V_j^* AV_j$$

where the series $\sum_{j=1}^{\infty} V_j^* AV_j$ converge strongly.
Question

Does the generator of a general QMS (that is, one which is not uniformly continuous) have a similar form?

Note 1: Many important examples of QMS are not uniformly continuous (for example, the QMS associated to the noncommutative heat equation).

Note 2: The QMS $(T_t)_{t \geq 0}$ is uniformly continuous if and only if L is bounded.
Davies ('79)

Let $T_t : S_1(\mathcal{H}) \to S_1(\mathcal{H})$ be a semigroup which satisfies:

- $T_t^*(C(\mathcal{H})) \subseteq C(\mathcal{H})$ for all $t \geq 0$,
- There exists $e \in \mathcal{H}\setminus\{0\}$ such that $T_t(|e\rangle\langle e|) = |e\rangle\langle e|$, and
- the map $[0, \infty) \ni t \mapsto T_t(A) \in \mathcal{B}(\mathcal{H})$ is SOT-continuous for all $A \in \mathcal{B}(\mathcal{H})$.

Then there exists a dense linear subspace D of \mathcal{H} and linear operators $G : D \to \mathcal{H}$ and $L_n : D \to \mathcal{H}$ such that the infinitesimal generator L of $(T_t)_{t \geq 0}$ is given by

$$L(A) = \sum_{n=1}^{\infty} L_n AL_n^* + GA + AG^*$$

for all $A \in (G - 1)^{-1}S_1(\mathcal{H})(G^* - 1)^{-1}$.
Holevo (‘95)

Let $(T_t)_{t \geq 0}$ be a QMS on $\mathcal{B}(\mathcal{H})$. Assume that there exists a dense linear subspace D of \mathcal{H} such that

$$\lim_{t \to 0} \left\langle x, \frac{T_t A - A}{t} y \right\rangle$$

exists for all $A \in \mathcal{B}(\mathcal{H})$ and all $x, y \in D$. Then there exists a linear operator $G : D \to \mathcal{H}$, a separable Hilbert space \mathcal{H}_0, and a linear operator $\mathcal{L} : D \to \mathcal{H} \otimes \mathcal{H}_0$ such that

$$\langle x, \mathcal{L}(A)y \rangle = \langle \mathcal{L}x, (A \otimes 1_0)(\mathcal{L}y) \rangle_{\mathcal{H} \otimes \mathcal{H}_0} + \langle Gx, Ay \rangle + \langle x, AGy \rangle$$

for all $A \in \mathcal{B}(\mathcal{H})$ and all $x, y \in D$.
Notation

If \mathcal{H} is a Hilbert space and D is a linear subspace of \mathcal{H}, let $S(D)$ denote the set of sesquilinear forms on $D \times D$.

Definition

Let D be a linear subspace of \mathcal{H} and A be a linear subspace of $\mathcal{B}(\mathcal{H})$. A linear map $\phi : A \rightarrow S(D)$ is called D-completely positive if for any $k \in \mathbb{N}$, and any positive operator $A = (A_{i,j})_{1 \leq i,j \leq k} \in A \otimes M_k(\mathbb{C})$ and for all $x_1, \ldots, x_k \in D$,

$$\sum_{i,j=1}^{k} \phi(A_{i,j})(x_i, x_j) \geq 0.$$
Definition

Let \((T_t)_{t \geq 0}\) be a QDS, \(L\) be its generator and \(\text{Dom}(L)\) its domain. Then

\[\mathcal{A} = \{ A \in \text{Dom}(L) : A^*A, AA^* \in \text{Dom}(L) \} \]

is the **domain algebra** and is equal to the largest \(^*\)-subalgebra of \(\text{Dom}(L)\) by Arveson ('02).
Androulakis, Z. (‘15)

Let \(L \) be the infinitesimal generator of a QMS on \(\mathcal{B}(\mathcal{H}) \) and let \(\mathcal{A} \) be its domain algebra. Assume that there exists \(e \in \mathcal{H} \) such that \(|e\rangle \langle e| \in \text{Dom}(L) \). Let

\[
\mathcal{D}_e = \{ x \in \mathcal{H} : |x\rangle \langle e| \in \mathcal{A} \}.
\]

Then there exists a linear map \(G : \mathcal{D}_e \to \mathcal{H} \) and a \(\mathcal{D}_e \)-completely positive map \(\phi : \mathcal{A} \to S(\mathcal{D}_e) \) such that

\[
\langle x, L(A) \rangle = \phi(A)(x, y) + \langle x, GAy \rangle + \langle GA^*x, y \rangle
\]

for all \(A \in \mathcal{A} \) and \(x, y \in \mathcal{D}_e \).
Androulakis, Z. (‘15)

Let \mathcal{A} be a unital $*$-subalgebra of $B(\mathcal{H})$, D be a linear subspace of \mathcal{H}, and $\phi : \mathcal{A} \to S(D)$ be a D-completely positive map. Then there exists a Hilbert space \mathcal{K}, a $*$-representation $\pi : \mathcal{A} \to B(\mathcal{K})$ and a linear map $V : D \to \mathcal{K}$ such that

$$\phi(A)(x, y) = \langle Vx, \pi(A)Vy \rangle_{\mathcal{K}}$$

for all $x, y \in D$.
Corollary

Let L be the infinitesimal generator of a QMS on $\mathcal{B}(\mathcal{H})$ and let \mathcal{A} be its domain algebra. Assume that there exists $e \in \mathcal{H}$ such that $|e\rangle\langle e| \in \text{Dom}(L)$. Let

$$D_e = \{ x \in \mathcal{H} : |x\rangle\langle e| \in \mathcal{A} \}.$$

Then there exists a Hilbert space \mathcal{K}, a \ast-representation $\pi : \mathcal{A} \rightarrow \mathcal{B}(\mathcal{K})$, and a linear map $V : D \rightarrow \mathcal{K}$ such that

$$\langle x, L(A)y \rangle = \langle Vx, \pi(A)Vy \rangle_{\mathcal{K}} + \langle x, GAy \rangle + \langle GA^* x, y \rangle$$

for all $A \in \mathcal{A}$ and $x, y \in D_e$.

Note: Can take G to be

$$G(x) = L(|x\rangle\langle e|)e - \frac{1}{2} \langle e, L(|e\rangle\langle e|)e \rangle x.$$
Example 1

(Parthasarathy (‘92)). Let \((B_t)_{t \geq 0}\) be standard Brownian motion, \(V\) be a selfadjoint operator on \(\mathcal{H}\) and define \(T_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})\) by

\[T_t(A) = \mathbb{E}[e^{iB_t V} A e^{-iB_t V}]. \]

Then \((T_t)_{t \geq 0}\) is a QMS.

If \(\mathcal{H} = L^2(\mathbb{R})\), \(V = i \frac{d}{dx}\), \(e(t) = e^{-t^2/2}\) then \(D_e\) is dense in \(L^2(\mathbb{R})\) and

\[\langle x, L(A)y \rangle = \langle Vx, AVy \rangle + \langle x, -\frac{1}{2} V^2 Ay \rangle + \langle -\frac{1}{2} V^2 A^* x, y \rangle \]

for all \(x, y \in U_e\) and \(A \in \mathcal{A}\).
Example 2

(Fagnola (‘00), Arveson, (‘02)). Let $\mathcal{H} = L^2[0, \infty)$, and let $U_t : \mathcal{H} \to \mathcal{H}$ be defined by

$$U_t(g)(s) = \begin{cases} g(s - t) & \text{if } s \geq t \\ 0 & \text{otherwise} \end{cases}$$

Define $E_t : L^2[0, \infty) \to L^2[0, t)$ the natural projection.

Define $\omega : \mathcal{B}(\mathcal{H}) \to \mathbb{C}$ by $\omega(A) = \langle f, Af \rangle$ where $f \in \mathcal{H}$ is defined by $f(s) = e^{-s}$ ($s \in [0, \infty)$).

Define $T_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$T_t(A) = \omega(A)E_t + U_tAU_t^*.$$

Then $(T_t)_{t \geq 0}$ is a QMS.
Fix $e \in L^2[0, \infty)$ such that $\mathcal{D}e \in L^2[0, \infty)$ (where \mathcal{D} is the differentiation operator), and $\langle e, f \rangle = 0$.
Then $D_e \subseteq \{x \in L^2[0, \infty) : \langle x, f \rangle = 0\}$ hence D_e is not dense in \mathcal{H}.
Also \mathcal{A} is not SOT dense in $\mathcal{B}(\mathcal{H})$.
We have
\[
\langle x, L(A)y \rangle = \omega(A)x(0)y(0) + \langle x, \mathcal{D}Ay \rangle + \langle \mathcal{D}A^*x, y \rangle
\]
for all $x, y \in D_e$ and $A \in \mathcal{A}$.

Matt Ziemke | Generators of QMS
Thank you!